Arithmetical representations of Brownian motion I

被引:27
作者
Fouché, W [1 ]
机构
[1] Univ Pretoria, Dept Math & Appl Math, ZA-0002 Pretoria, South Africa
关键词
D O I
10.2307/2586546
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss ways in which a typical one-dimensional Brownian motion can be approximated by oscillations which are encoded by finite binary strings of high descriptive complexity We study the recursive properties of Brownian motions that can be thus obtained.
引用
收藏
页码:421 / 442
页数:22
相关论文
共 22 条
[1]  
[Anonymous], 1978, RECURSION THEORETIC, DOI DOI 10.1007/978-3-662-12898-5
[2]  
ASARIN E. A., 1986, AVTOMAT TELEMEKH, P25
[3]  
BILLINGSLEY P, 1995, PROBABILITY MEASURE
[4]  
Billingsley P, 1968, CONVERGE PROBAB MEAS
[5]  
CHAITIN G, 1987, ALGORITHMIC INFORMAT
[6]   ON LENGTH OF PROGRAMS FOR COMPUTING FINITE BINARY SEQUENCES [J].
CHAITIN, GJ .
JOURNAL OF THE ACM, 1966, 13 (04) :547-+
[7]  
Donsker M. D., 1951, MEMOIRS AM MATH SOC, V6
[8]   Descriptive complexity and reflective properties of combinatorial configurations [J].
Fouche, WL .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 :199-208
[9]  
Freedman D., 1971, BROWNIAN MOTION DIFF
[10]  
Hida T., 1980, BROWNIAN MOTION