EXPERIMENTAL ANALYSIS FOR THE ANISOTROPIC FLOWS IN CANCELLOUS BONE

被引:3
作者
Ito, Makoto [1 ]
Tupin, Simon [2 ]
Anzai, Hitomi [3 ]
Suzuki, Anna [2 ]
Ohta, Makoto [2 ]
机构
[1] Tohoku Univ, Grad Sch Engn, Sendai, Miyagi, Japan
[2] Tohoku Univ, Inst Fluid Sci, Sendai, Miyagi, Japan
[3] Tohoku Univ, Frontier Res Inst Interdisciplinary Sci, Sendai, Miyagi, Japan
来源
PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2017, VOL 3 | 2018年
关键词
NON-DARCY FLOW; FLUID-FLOW; TRABECULAR BONE; PERMEABILITY; MARROW; GRAFT;
D O I
10.1115/IMECE2017-71346
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cancellous bone contains bone marrow where hematopoietic stem cells (HSCs) are produced. Those cells represent an interest in the treatment of leukemia during which transplantation of bone marrow is performed to replace patient degraded cells. HSCs are usually harvested by a puncture in the cancellous bone of the donor's ilium using a needle. However, this procedure can cause severe burden to the donor because of its high invasiveness. The flow of bone marrow is strongly related to the harvesting of HSCs and permeability is one of the major parameters to characterize cancellous bone. Previous researches have already shown an anisotropy of permeability in femur, whereas punctures are usually performed in the iliac cancellous bone. The objective of this paper is to characterize the anisotropic permeability of iliac cancellous bone. Digital images of a porcine iliac cancellous bone sample were obtained by micro-computed tomography (micro-CT), and three locations were selected to fabricate bone models, reproduced by 3D printing at three times magnification. To compare the structure of manufactured models, porosity and its variations along X, Y and Z direction were evaluated from micro-CT images. To measure permeability, a specific perfusion system was developed. The pressure drop between the upstream and the downstream of bone models were measured at different flow rates, reaching a Reynolds number of 27-158, appropriate for the aspiration condition. Darcy-Forchheimer's law was then applied to calculate the permeability and Forchheimer coefficient of bone models. Results revealed different porosities and resultant permeabilities for each bone nodels. A positive correlation links those two parameters. Different fluctuations of porosity were evaluated along each direction although no significant difference of average porosity was observed. On the other hand, different permeabilities and Forchheimer coefficients were measured in each direction with various degrees of anisotropy. Permeabilities in three orthogonal directions of the model ranged from 1.96x10(-10) to 4.29X10(-10) m(2). Results indicate that transport properties in cancellous bone depend on the flow directions. The anisotropy of permeability can be used for evaluation of flow in cancellous bone.
引用
收藏
页数:7
相关论文
共 28 条
[1]   Inertial effects on fluid flow through disordered porous media [J].
Andrade, JS ;
Costa, UMS ;
Almeida, MP ;
Makse, HA ;
Stanley, HE .
PHYSICAL REVIEW LETTERS, 1999, 82 (26) :5249-5252
[2]  
Arramon Y. P., 2009, BONE MECH HDB
[3]   ANATOMICAL VARIATION OF ORTHOTROPIC ELASTIC-MODULI OF THE PROXIMAL HUMAN TIBIA [J].
ASHMAN, RB ;
RHO, JY ;
TURNER, CH .
JOURNAL OF BIOMECHANICS, 1989, 22 (8-9) :895-900
[4]  
Bear J., 1972, Dynamics of Fluids in Porous Media, P119
[5]   Fluid flow through granular beds [J].
Carman, PC .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 1997, 75 :S32-S48
[6]  
Cheng P., 1979, ADV HEAT TRANSFER, V14, P1, DOI 10.1016/S0065-2717(08)70085-6
[7]   Fluid shear stress in trabecular bone marrow due to low-magnitude high-frequency vibration [J].
Coughlin, Thomas R. ;
Niebur, Glen L. .
JOURNAL OF BIOMECHANICS, 2012, 45 (13) :2222-2229
[8]   Numerical well model for non-Darcy flow through isotropic porous media [J].
Ewing, RE ;
Lazarov, RD ;
Lyons, SL ;
Papavassiliou, DV ;
Pasciak, J ;
Qin, G .
COMPUTATIONAL GEOSCIENCES, 1999, 3 (3-4) :185-204
[9]   Bone-grafting and bone-graft substitutes [J].
Finkemeier, CG .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 2002, 84A (03) :454-464
[10]   Measurements of permeability in human calcaneal trabecular bone [J].
Grimm, MJ ;
Williams, JL .
JOURNAL OF BIOMECHANICS, 1997, 30 (07) :743-745