Reduced-state SARSA with channel reassignment for dynamic channel allocation in cellular mobile networks

被引:0
作者
Lilith, N [1 ]
Dogançay, K [1 ]
机构
[1] Univ S Australia, Sch Elect & Informat Engn, Mawson Lakes, SA, Australia
来源
TELECOMMUICATIONS AND NETWORKING - ICT 2004 | 2004年 / 3124卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper proposes a novel solution to the dynamic channel allocation problem in cellular telecommunication networks featuring user mobility and call handoffs. We investigate the performance of a number of reinforcement learning algorithms including Q-learning and SARSA, and show via simulations that a reduced-state version of SARSA incorporating a limited channel reassignment mechanism provides superior performance in terms of new call and handoff blocking probability and a significant reduction in memory requirements.
引用
收藏
页码:1327 / 1336
页数:10
相关论文
共 13 条
[1]  
Bertsekas D., 2012, Dynamic Programming and Optimal Control, V1
[2]  
Bertsekas D. P., 1996, Neuro Dynamic Programming, V1st
[3]  
Bertsekas DP, 1995, Dynamic Programming and Optimal Control, V2
[4]  
FREEMAN RL, 1996, TELECOMMUNICATION SY
[5]  
Jordan S, 1996, J HIGH SPEED NETW, V5, P23
[6]  
LILITH N, 2004, IN PRESS P WCNC 2004
[7]  
Mitchell TM., 1997, MACH LEARN, V1
[8]   A Q-learning-based dynamic channel assignment technique for mobile communication systems [J].
Nie, JH ;
Haykin, S .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 1999, 48 (05) :1676-1687
[9]   Handoff traffic characterization in cellular networks under nonclassical arrivals and service time distributions [J].
Rajaratnam, M ;
Takawira, F .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2001, 50 (04) :954-970
[10]  
SENOUCI SM, 10 INT C TEL, V1, P302