Finite element approximation of free vibration of folded plates

被引:23
作者
Hernandez, Erwin [1 ]
Hervella-Nieto, Luis [2 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Matemat, Valparaiso, Chile
[2] Univ A Coruna, Fac Informat, Dept Matemat, La Coruna 15071, Spain
关键词
Folded plates; Drilling degree of freedom; MITC;
D O I
10.1016/j.cma.2008.12.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper a finite element approximation of the free vibration of folded plates is studied. Naghdi model, including bending, shear and membrane terms for the plate, is considered. Quadrilateral low order MITC (Mixed Interpolation Tensorial Component) elements are used for the bending and shear effect, coupled with standard quadratic elements enriched with a drilling degree of freedom for the membrane term. Convergence properties and optimal order error estimates are proved. Numerical examples, showing the good behavior of the method, are presented for one and two folded plates with different thickness and crank angles. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1360 / 1367
页数:8
相关论文
共 17 条
[1]  
Babuka I., 1991, Handbook of Numerical Analysis, VII, P641
[2]  
Bathe K.-J., 2006, FINITE ELEMENT PROCE
[3]  
Bathe K.J., 1985, The Mathematics of Finite Elements and Applications V, P491
[4]   A 4-NODE PLATE BENDING ELEMENT BASED ON MINDLIN REISSNER PLATE-THEORY AND A MIXED INTERPOLATION [J].
BATHE, KJ ;
DVORKIN, EN .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1985, 21 (02) :367-383
[5]  
Bernadou M., 1996, Finite Element Methods for Thin Shell Problems
[6]   Fundamental considerations for the finite element analysis of shell structures [J].
Chapelle, D ;
Bathe, KJ .
COMPUTERS & STRUCTURES, 1998, 66 (01) :19-36
[7]  
Ciarlet PG., 1991, Handbook of numerical analysis, VVol. II, P17
[8]   ON MIXED FINITE-ELEMENT METHODS FOR THE REISSNER-MINDLIN PLATE MODEL [J].
DURAN, R ;
LIBERMAN, E .
MATHEMATICS OF COMPUTATION, 1992, 58 (198) :561-573
[9]   Error estimates for low-order isoparametric quadrilateral finite elements for plates [J].
Durán, RG ;
Hernández, E ;
Hervella-Nieto, L ;
Liberman, E ;
Rodríguez, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (05) :1751-1772
[10]  
Grisvard P, 2011, CLASS APPL MATH, V69, P1, DOI 10.1137/1.9781611972030