Sodium-ion battery cathodes Na2FeP2O7 and Na2MnP2O7: diffusion behaviour for high rate performance

被引:96
作者
Clark, John M. [1 ]
Barpanda, Prabeer [2 ,3 ,4 ]
Yamada, Atsuo [2 ,4 ]
Islam, M. Saiful [1 ]
机构
[1] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
[2] Univ Tokyo, Sch Engn, Dept Chem Syst Engn, Bunkyo Ku, Tokyo 1138656, Japan
[3] Indian Inst Sci, Mat Res Ctr, Bangalore 560012, Karnataka, India
[4] Kyoto Univ, Unit Element Strategy Initiat Catalysts & Batteri, ESICB, Kyoto 6158510, Japan
基金
英国工程与自然科学研究理事会;
关键词
PYROPHOSPHATE CATHODE; LI-ION; IRON PYROPHOSPHATE; LITHIUM TRANSPORT; LIMPO4; M; INSIGHTS; NA; CHALLENGES; VOLTAGE; LIFEPO4;
D O I
10.1039/c4ta02383h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Na-ion batteries are currently the focus of significant research activity due to the relative abundance of sodium and its consequent cost advantages. Recently, the pyrophosphate family of cathodes has attracted considerable attention, particularly Li2FeP2O7 related to its high operating voltage and enhanced safety properties; in addition the sodium-based pyrophosphates Na2FeP2O7 and Na2MnP2O7 are also generating interest. Herein, we present defect chemistry and ion migration results, determined via atomistic simulation techniques, for Na2MP2O7 (where M = Fe, Mn) as well as findings for Li2FeP2O7 for direct comparison. Within the pyrophosphate framework the most favourable intrinsic defect type is found to be the antisite defect, in which alkali-cations (Na/Li) and M ions exchange positions. Low activation energies are found for long-range diffusion in all crystallographic directions in Na2MP2O7 suggesting three-dimensional (3D) Na-ion diffusion. In contrast Li2FeP2O7 supports 2D Li-ion diffusion. The 2D or 3D nature of the alkali-ion migration pathways within these pyrophosphate materials means that antisite defects are much less likely to impede their transport properties, and hence important for high rate performance.
引用
收藏
页码:11807 / 11812
页数:6
相关论文
共 53 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Structure and Lithium Transport Pathways in Li2FeSiO4 Cathodes for Lithium Batteries [J].
Armstrong, A. Robert ;
Kuganathan, Navaratnarajah ;
Islam, M. Saiful ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (33) :13031-13035
[3]  
Armstrong AR, 2011, NAT MATER, V10, P223, DOI [10.1038/nmat2967, 10.1038/NMAT2967]
[4]   A sodium-ion cell based on the fluorophosphate compound NaVPO4F [J].
Barker, J ;
Saidi, MY ;
Swoyer, JL .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (01) :A1-A4
[5]  
Barpanda P, 2011, NAT MATER, V10, P772, DOI [10.1038/nmat3093, 10.1038/NMAT3093]
[6]   Na2FeP2O7: A Safe Cathode for Rechargeable Sodium-ion Batteries [J].
Barpanda, Prabeer ;
Liu, Guandong ;
Ling, Chris D. ;
Tamaru, Mao ;
Avdeev, Maxim ;
Chung, Sai-Cheong ;
Yamada, Yuki ;
Yamada, Atsuo .
CHEMISTRY OF MATERIALS, 2013, 25 (17) :3480-3487
[7]   A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries [J].
Barpanda, Prabeer ;
Ye, Tian ;
Avdeev, Maxim ;
Chung, Sai-Cheong ;
Yamada, Atsuo .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (13) :4194-4197
[8]   Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries [J].
Barpanda, Prabeer ;
Ye, Tian ;
Nishimura, Shin-ichi ;
Chung, Sai-Cheong ;
Yamada, Yuki ;
Okubo, Masashi ;
Zhou, Haoshen ;
Yamada, Atsuo .
ELECTROCHEMISTRY COMMUNICATIONS, 2012, 24 :116-119
[9]   Structural, Transport, and Electrochemical Investigation of Novel AMSO4F (A = Na, Li; M = Fe, Co, Ni, Mn) Metal Fluorosulphates Prepared Using Low Temperature Synthesis Routes [J].
Barpanda, Prabeer ;
Chotard, Jean-Noel ;
Recham, Nadir ;
Delacourt, Charles ;
Ati, Mohamed ;
Dupont, Loic ;
Armand, Michel ;
Tarascon, Jean-Marie .
INORGANIC CHEMISTRY, 2010, 49 (16) :7401-7413
[10]   High-Voltage Pyrophosphate Cathode: Insights into Local Structure and Lithium-Diffusion Pathways [J].
Clark, John M. ;
Nishimura, Shin-ichi ;
Yamada, Atsuo ;
Islam, M. Saiful .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (52) :13149-13153