The Weil Algebra of a Hopf Algebra I: A Noncommutative Framework

被引:0
作者
Dubois-Violette, Michel [1 ]
Landi, Giovanni [2 ,3 ]
机构
[1] Univ Paris 11, Phys Theor Lab, UMR 8627, F-91405 Orsay, France
[2] Univ Trieste, Dipartimento Matemat, I-34127 Trieste, Italy
[3] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy
关键词
CYCLIC COHOMOLOGY; MANIFOLDS; GEOMETRY;
D O I
10.1007/s00220-014-1902-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize the notion, introduced by Henri Cartan, of an operation of a Lie algebra in a graded differential algebra Omega. We define the notion of an operation of a Hopf algebra in a graded differential algebra Omega which is referred to as a -operation. We then generalize for such an operation the notion of algebraic connection. Finally we discuss the corresponding noncommutative version of the Weil algebra: The Weil algebra of the Hopf algebra is the universal initial object of the category of -operations with connections.
引用
收藏
页码:851 / 874
页数:24
相关论文
共 42 条
  • [1] The non-commutative Weil algebra
    Alekseev, A
    Meinrenken, E
    [J]. INVENTIONES MATHEMATICAE, 2000, 139 (01) : 135 - 172
  • [2] [Anonymous], INVITATION NONCOMMUT
  • [3] [Anonymous], 1994, NONCOMMUTATIVE GEOME
  • [4] AN INTRODUCTION TO NONCOMMUTATIVE DIFFERENTIAL GEOMETRY ON QUANTUM GROUPS
    ASCHIERI, P
    CASTELLANI, L
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (10): : 1667 - 1706
  • [5] Bourbaki N., 1970, Algebre
  • [6] Differential and Twistor Geometry of the Quantum Hopf Fibration
    Brain, Simon
    Landi, Giovanni
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 315 (02) : 489 - 530
  • [7] QUANTUM GROUP GAUGE-THEORY ON QUANTUM SPACES
    BRZEZINSKI, T
    MAJID, S
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (03) : 591 - 638
  • [8] QUANTUM GROUP GAUGE-THEORY ON QUANTUM SPACES
    BRZEZINSKI, T
    MAJID, S
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (03) : 591 - 638
  • [9] CARTAN H., 1951, C TOPOLOGIE ESPACES, P57
  • [10] Cartan H., 1950, C TOPOLOGIE, P15