High Temperature Fabrication of Nanostructured Yttria-Stabilized-Zirconia (YSZ) Scaffolds by In Situ Carbon Templating Xerogels

被引:6
|
作者
Muhoza, Sixbert P. [1 ]
Cottam, Matthew A. [1 ]
Gross, Michael D. [1 ,2 ]
机构
[1] Wake Forest Univ, Dept Chem, Winston Salem, NC 27109 USA
[2] Wake Forest Univ, Ctr Energy Environm & Sustainabil, Winston Salem, NC 27109 USA
来源
关键词
Engineering Issue 122; solid oxide fuel cell; yttria stabilized zirconia; in-situ carbon templating; xerogel; porous; composite; nanostructure; OXIDE FUEL-CELLS; SOL-GEL SYNTHESIS; SOFC ANODES; CERIA;
D O I
10.3791/55500
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We demonstrate a method for the high temperature fabrication of porous, nanostructured yttria-stabilized-zirconia (YSZ, 8 mol% yttria -92 mol% zirconia) scaffolds with tunable specific surface areas up to 80 m(2).g(-1). An aqueous solution of a zirconium salt, yttrium salt, and glucose is mixed with propylene oxide (PO) to form a gel. The gel is dried under ambient conditions to form a xerogel. The xerogel is pressed into pellets and then sintered in an argon atmosphere. During sintering, a YSZ ceramic phase forms and the organic components decompose, leaving behind amorphous carbon. The carbon formed in situ serves as a hard template, preserving a high surface area YSZ nanomorphology at sintering temperature. The carbon is subsequently removed by oxidation in air at low temperature, resulting in a porous, nanostructured YSZ scaffold. The concentration of the carbon template and the final scaffold surface area can be systematically tuned by varying the glucose concentration in the gel synthesis. The carbon template concentration was quantified using thermogravimetric analysis (TGA), the surface area and pore size distribution was determined by physical adsorption measurements, and the morphology was characterized using scanning electron microscopy (SEM). Phase purity and crystallite size was determined using X-ray diffraction (XRD). This fabrication approach provides a novel, flexible platform for realizing unprecedented scaffold surface areas and nanomorphologies for ceramic-based electrochemical energy conversion applications, e.g. solid oxide fuel cell (SOFC) electrodes.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] HIGH-TEMPERATURE CREEP OF YTTRIA STABILIZED ZIRCONIA
    SELTZER, MS
    TALTY, PK
    AMERICAN CERAMIC SOCIETY BULLETIN, 1973, 52 (08): : 646 - 646
  • [22] Miniaturized Low-Temperature Solid Oxide Fuel Cells With An Yttria-Stabilized-Zirconia Foil Electrolyte
    Evans, A.
    Bieberle-Huetter, A.
    Bonderer, L. J.
    Hodel, P. Chen D.
    Rupp, J. L. M.
    Gauckler, L. J.
    SOLID OXIDE FUEL CELLS 11 (SOFC-XI), 2009, 25 (02): : 989 - 993
  • [23] Microstructure and thermal cycling behavior of nanostructured yttria partially stabilized zirconia (YSZ) thermal barrier coatings
    孙杰
    张丽丽
    赵丹
    JournalofRareEarths, 2010, 28(S1) (S1) : 198 - 201
  • [24] Microstructure and thermal cycling behavior of nanostructured yttria partially stabilized zirconia (YSZ) thermal barrier coatings
    Sun Jie
    Zhang Lili
    Zhao Dan
    JOURNAL OF RARE EARTHS, 2010, 28 : 198 - 201
  • [25] Fabrication of yttria-stabilized-zirconia coatings using electrophoretic deposition: Effects of agglomerate size distribution on particle packing
    Ji, Changzheng
    Shapiro, Ian P.
    Xiao, Ping
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2009, 29 (15) : 3167 - 3175
  • [26] HIGH-TEMPERATURE CREEP OF YTTRIA-STABILIZED ZIRCONIA
    SELTZER, MS
    TALTY, PK
    AMERICAN CERAMIC SOCIETY BULLETIN, 1974, 53 (04): : 321 - 321
  • [27] High temperature deformation of a yttria-stabilized tetragonal zirconia
    Morita, K
    Hiraga, K
    Sakka, Y
    SUPERPLASTICITY IN ADVANCED MATERIALS, ICSAM-2000, 2001, 357-3 : 187 - 192
  • [28] High-Temperature Stability in Yttria-Stabilized Zirconia
    Ogawa, Mitsue
    HEAT TRANSFER-ASIAN RESEARCH, 2008, 37 (02): : 57 - 67
  • [29] Optimizing surfactant templating of yttria-stabilized zirconia aerogels for high-temperature applications: Effect of cationic surfactant
    Walker, Rebecca C.
    Stokes, Jamesa L.
    Hurwitz, Frances, I
    Guo, Haiquan
    Ferri, James K.
    MICROPOROUS AND MESOPOROUS MATERIALS, 2022, 330
  • [30] Fabrication of yttria-stabilized zirconia (YSZ) film by combined operation of electrophoretic deposition and electrochemical deposition
    Lu, Lizhu
    Dian, Hongwei
    Xie, Huiqin
    Cailiao Yanjiu Xuebao/Chinese Journal of Materials Research, 2001, 15 (05): : 525 - 529