Hodge integrals and Hurwitz numbers via virtual localization

被引:47
作者
Graber, T [1 ]
Vakil, R
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Hodge integrals; Hurwitz numbers; virtual localization;
D O I
10.1023/A:1021791611677
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give another proof of Ekedahl, Lando, Shapiro, and Vainshtein's remarkable formula expressing Hurwitz numbers (counting covers of P-1 with specified simple branch points, and specified branching over one other point) in terms of Hodge integrals. Our proof uses virtual localization on the moduli space of stable maps. We describe how the proof could be simplified by the proper algebro-geometric definition of a 'relative space'. Such a space has recently been defined by J. Li.
引用
收藏
页码:25 / 36
页数:12
相关论文
共 25 条
[2]   LARGE N-PHASES OF CHIRAL QCD(2) [J].
CRESCIMANNO, M ;
TAYLOR, W .
NUCLEAR PHYSICS B, 1995, 437 (01) :3-24
[3]  
Denes J., 1959, Magyar Tud. Akad. Mat. Kutato Int. Kozl., V4, P63
[4]   Localization in equivariant intersection theory and the Bott residue formula [J].
Edidin, D ;
Graham, W .
AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (03) :619-636
[5]   On Hurwitz numbers and Hedge integrals [J].
Ekedahl, T ;
Lando, S ;
Shapiro, M ;
Vainshtein, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (12) :1175-1180
[6]   Hurwitz numbers and intersections on moduli spaces of curves [J].
Ekedahl, T ;
Lando, S ;
Shapiro, M ;
Vainshtein, A .
INVENTIONES MATHEMATICAE, 2001, 146 (02) :297-327
[7]   Stable maps and branch divisors [J].
Fantechi, B ;
Pandharipande, R .
COMPOSITIO MATHEMATICA, 2002, 130 (03) :345-364
[8]  
GATHMANN A, 1999, MATHAG9908054
[9]   Transitive factorisations into transpositions and holomorphic mappings on the sphere [J].
Goulden, IP ;
Jackson, DM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (01) :51-60
[10]   The Gromov-Witten potential of a point, Hurwitz numbers, and Hodge integrals [J].
Goulden, IP ;
Jackson, DM ;
Vakil, R .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2001, 83 :563-581