共 50 条
Polyamines Influence Mouse Sperm Channels Activity
被引:6
作者:
Rodriguez-Paez, Lorena
[1
]
Aguirre-Alvarado, Charmina
[1
,2
]
Oviedo, Norma
[2
]
Alcantara-Farfan, Veronica
[1
]
Lara-Ramirez, Edgar E.
[3
]
Jimenez-Gutierrez, Guadalupe Elizabeth
[1
]
Cordero-Martinez, Joaquin
[1
]
机构:
[1] Inst Politecn Nacl, Escuela Nacl Ciencias Biol, Lab Bioquim Farmacol, Dept Bioquim, Mexico City 11340, DF, Mexico
[2] IMSS, Ctr Med Nacl, Unidad Invest Med Inmunol & Infectol, Mexico City 02990, DF, Mexico
[3] Inst Mexicano Seguro Social IMSS, Unidad Invest Biomed Zacatecas, Zacatecas 98000, Zacatecas, Mexico
关键词:
polyamines;
spermatozoa;
soluble adenylate cyclase;
channels;
SOLUBLE ADENYLYL-CYCLASE;
ION CHANNELS;
SPERMATOZOA;
INVOLVEMENT;
EXPRESSION;
SODIUM;
D O I:
10.3390/ijms22010441
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Polyamines are ubiquitous polycationic compounds that are highly charged at physiological pH. While passing through the epididymis, sperm lose their capacity to synthesize the polyamines and, upon ejaculation, again come into contact with the polyamines contained in the seminal fluid, unleashing physiological events that improve sperm motility and capacitation. In the present work, we hypothesize about the influence of polyamines, namely, spermine, spermidine, and putrescine, on the activity of sperm channels, evaluating the intracellular concentrations of chloride [Cl-]i, calcium [Ca2+]i, sodium [Na+]i, potassium [K+]i, the membrane V-m, and pHi. The aim of this is to identify the possible regulatory mechanisms mediated by the polyamines on sperm-specific channels under capacitation and non-capacitation conditions. The results showed that the presence of polyamines did not directly influence the activity of calcium and chloride channels. However, the results suggested an interaction of polyamines with sodium and potassium channels, which may contribute to the membrane V-m during capacitation. In addition, alkalization of the pHi revealed the possible activation of sperm-specific Na+/H+ exchangers (NHEs) by the increased levels of cyclic AMP (cAMP), which were produced by soluble adenylate cyclase (sAC) and interact with the polyamines, evidence that is supported by in silico analysis.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条