Group entwining structures and group coalgebra Galois extensions

被引:39
作者
Wang, SH [1 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
group entwining; Doi-Hopf group module; group coalgebra Galois extension;
D O I
10.1081/AGB-120039403
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notions of group coalgebra Galois extension and group entwining structure are defined. It is proved that any group coalgebra Galois extension induces a unique group-entwining map psi = {psi(alpha,beta)}(alpha,betais an element ofpi) compatible with the right group coaction, generalizing the recent work of Brzezinski and Hajac [Brzezinski, T., Hajac, P. M. (1999). Coalgebra extensions and algebra coextensions of Galois type. Comm. Algebra 27:1347-1368].
引用
收藏
页码:3437 / 3457
页数:21
相关论文
共 13 条
  • [1] On modules associated to coalgebra Galois extensions
    Brzenzinski, T
    [J]. JOURNAL OF ALGEBRA, 1999, 215 (01) : 290 - 317
  • [2] Coalgebra extensions and algebra coextensions of Galois type
    Brzezinski, T
    Hajac, PM
    [J]. COMMUNICATIONS IN ALGEBRA, 1999, 27 (03) : 1347 - 1367
  • [3] Coalgebra bundles
    Brzezinski, T
    Majid, S
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 191 (02) : 467 - 492
  • [4] Caenepeel S., 2002, Lecture Notes in Math, V1787
  • [5] DOI Y, 1992, J ALGEBRA, V153, P373, DOI 10.1016/0021-8693(92)90160-N
  • [6] DOI Y, 1983, COMMUN ALGEBRA, V11, P243, DOI 10.1080/00927878308822847
  • [7] MONTGOMERY S, 1993, CBMS LECT MATH, V0082
  • [8] Sweedler M E, 1969, HOPF ALGEBRAS
  • [9] Turaev Vladimir., 2000, Homotopy field theory in dimension 3 and crossed group-categories
  • [10] Hopf group-coalgebras
    Virelizier, A
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2002, 171 (01) : 75 - 122