Our Evolving Understanding of the Mechanism of Quinolones

被引:25
作者
Gutierrez, Arnaud [1 ]
Stokes, Jonathan M. [2 ,3 ,4 ]
Matic, Ivan [1 ,5 ]
机构
[1] Sorbonne Paris Cite, Univ Paris Descartes, INSERM, U1001,Fac Med Paris Descartes, F-75014 Paris, France
[2] MIT, Dept Biol Engn, Inst Med Engn & Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Synthet Biol Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] Broad Inst MIT & Harvard, Infect Dis & Microbiome Program, Cambridge, MA 02142 USA
[5] CNRS, Dept Life Sci, F-75016 Paris, France
来源
ANTIBIOTICS-BASEL | 2018年 / 7卷 / 02期
关键词
antibiotics; quinolones; topoisomerases; DNA replication; DNA supercoiling; DEOXYRIBONUCLEIC-ACID GYRASE; ESCHERICHIA-COLI; NALIDIXIC-ACID; DNA GYRASE; GENE-EXPRESSION; REPLICATION FORKS; PROTEIN-SYNTHESIS; ANAEROBIC GROWTH; 2-GATE MECHANISM; TOPOISOMERASE;
D O I
10.3390/antibiotics7020032
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
The maintenance of DNA supercoiling is essential for the proper regulation of a plethora of biological processes. As a consequence of this mode of regulation, ahead of the replication fork, DNA replication machinery is prone to introducing supercoiled regions into the DNA double helix. Resolution of DNA supercoiling is essential to maintain DNA replication rates that are amenable to life. This resolution is handled by evolutionarily conserved enzymes known as topoisomerases. The activity of topoisomerases is essential, and therefore constitutes a prime candidate for targeting by antibiotics. In this review, we present hallmark investigations describing the mode of action of quinolones, one of the antibacterial classes targeting the function of topoisomerases in bacteria. By chronologically analyzing data gathered on the mode of action of this imperative antibiotic class, we highlight the necessity to look beyond primary drug-target interactions towards thoroughly understanding the mechanism of quinolones at the level of the cell.
引用
收藏
页数:8
相关论文
共 63 条
[1]   Mechanism of Quinolone Action and Resistance [J].
Aldred, Katie J. ;
Kerns, Robert J. ;
Osheroff, Neil .
BIOCHEMISTRY, 2014, 53 (10) :1565-1574
[2]   Metabolic Control of Persister Formation in Escherichia coli [J].
Amato, Stephanie M. ;
Orman, Mehmet A. ;
Brynildsen, Mark P. .
MOLECULAR CELL, 2013, 50 (04) :475-487
[3]   PROTEIN SYNTHESIS AND RNA TURNOVER IN A PYRIMIDINE-DEFICIENT BACTERIUM [J].
BARNER, HD ;
COHEN, SS .
BIOCHIMICA ET BIOPHYSICA ACTA, 1958, 30 (01) :12-20
[4]   Origins of the Quinolone Class of Antibacterials: An Expanded "Discovery Story" [J].
Bisacchi, Gregory S. .
JOURNAL OF MEDICINAL CHEMISTRY, 2015, 58 (12) :4874-4882
[5]   Molecular mechanisms of antibiotic resistance [J].
Blair, Jessica M. A. ;
Webber, Mark A. ;
Baylay, Alison J. ;
Ogbolu, David O. ;
Piddock, Laura J. V. .
NATURE REVIEWS MICROBIOLOGY, 2015, 13 (01) :42-51
[6]   MECHANISM OF ACTION OF NALIDIXIC ACID ON ESCHERICHIA COLI .6. CELL-FREE STUDIES [J].
BOYLE, JV ;
COOK, TM ;
GOSS, WA .
JOURNAL OF BACTERIOLOGY, 1969, 97 (01) :230-&
[7]  
Bush N. G., 2015, ECOSAL PLUS, V6
[8]   Crystal structure of the breakage-reunion domain of DNA gyrase [J].
Cabral, JHM ;
Jackson, AP ;
Smith, CV ;
Shikotra, N ;
Maxwell, A ;
Liddington, RC .
NATURE, 1997, 388 (6645) :903-906
[9]   ADENYLATE ENERGY CHARGE IN ESCHERICHIA-COLI DURING GROWTH AND STARVATION [J].
CHAPMAN, AG ;
FALL, L ;
ATKINSON, DE .
JOURNAL OF BACTERIOLOGY, 1971, 108 (03) :1072-+
[10]   Antibacterial action of quinolones: From target to network [J].
Cheng, Guyue ;
Hao, Haihong ;
Dai, Menghong ;
Liu, Zhenli ;
Yuan, Zonghui .
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2013, 66 :555-562