Clifford systems, Clifford structures, and their canonical differential forms

被引:0
|
作者
Boydon, Kai Brynne M. [1 ]
Piccinni, Paolo [2 ]
机构
[1] Univ Philippines Diliman, Inst Math, Quezon City, Philippines
[2] Sapienza Univ Roma, Dipartimento Matemat, Piazzale Aldo Moro 2, I-00185 Rome, Italy
来源
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG | 2021年 / 91卷 / 01期
关键词
Octonions; Clifford system; Clifford structure; Calibration; Canonical form;
D O I
10.1007/s12188-020-00229-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A comparison among different constructions in H-2 congruent to R-8 of the quaternionic 4-form Phi(Sp(2)Sp(1)) and of the Cayley calibration Phi(Spin(7)) shows that one can start for them from the same collections of "Kahler 2-forms", entering both in quaternion Kahler and in Spin(7) geometry. This comparison relates with the notions of even Clifford structure and of Clifford system. Going to dimension 16, similar constructions allow to write explicit formulas in R-16 for the canonical 4-forms Phi(Spin(8)) and Phi(Spin(7)U(1)), associated with Clifford systems related with the subgroups Spin(8) and Spin(7)U(1) of SO(16). We characterize the calibrated 4-planes of the 4-forms Phi(Spin(8)) and Phi(Spin(7)U(1)), extending in two different ways the notion of Cayley 4-plane to dimension 16.
引用
收藏
页码:101 / 115
页数:15
相关论文
共 50 条
  • [1] Clifford systems, Clifford structures, and their canonical differential forms
    Kai Brynne M. Boydon
    Paolo Piccinni
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2021, 91 : 101 - 115
  • [2] Differential Forms and Clifford Analysis
    Sabadini, Irene
    Sommen, Franciscus
    MODERN TRENDS IN HYPERCOMPLEX ANALYSIS, 2016, : 247 - 263
  • [3] Differential Forms in Hermitean Clifford Analysis
    Brackx, F.
    De Schepper, H.
    Eelbode, D.
    Soucek, V.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 642 - +
  • [4] Duality for Harmonic Differential Forms Via Clifford Analysis
    Ricardo Abreu-Blaya
    Juan Bory-Reyes
    Richard Delanghe
    Frank Sommen
    Advances in Applied Clifford Algebras, 2007, 17 : 589 - 610
  • [5] Annihilators for Harmonic Differential Forms Via Clifford Analysis
    Abreu-Blaya, Ricardo
    Bory-Reyes, Juan
    Delanghe, Richard
    Sommen, Frank
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2011, 21 (03) : 443 - 454
  • [6] Duality for harmonic differential forms via Clifford analysis
    Abreu-Blaya, Ricardo
    Bory-Reyes, Juan
    Delanghe, Richard
    Sommen, Frank
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2007, 17 (04) : 589 - 610
  • [7] Annihilators for Harmonic Differential Forms Via Clifford Analysis
    Ricardo Abreu-Blaya
    Juan Bory-Reyes
    Richard Delanghe
    Frank Sommen
    Advances in Applied Clifford Algebras, 2011, 21 : 443 - 454
  • [8] SPACES OF NORMED BILINEAR-FORMS AND CLIFFORD STRUCTURES
    BIER, T
    SCHWARDMANN, U
    MATHEMATISCHE ZEITSCHRIFT, 1982, 180 (02) : 203 - 215
  • [9] Canonical forms for single-qutrit Clifford plus T operators
    Glaudell, Andrew N.
    Ross, Neil J.
    Taylor, Jacob M.
    ANNALS OF PHYSICS, 2019, 406 : 54 - 70
  • [10] Clifford structures on manifolds
    Burlakov M.P.
    Journal of Mathematical Sciences, 1998, 89 (3) : 1311 - 1333