Hypothesis testing for Gaussian states on bosonic lattices

被引:17
作者
Mosonyi, Milan [1 ]
机构
[1] Tohoku Univ, Grad Sch Informat Sci, Aoba Ku, Sendai, Miyagi 9808579, Japan
关键词
boson systems; Gaussian processes; lattice theory; probability; RELATIVE ENTROPY; STEINS LEMMA; QUANTUM;
D O I
10.1063/1.3085759
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The asymptotic state discrimination problem with simple hypotheses is considered for a cubic lattice of bosons. A complete solution is provided for the problems of the Chernoff and the Hoeffding bounds and Stein's lemma in the case when both hypotheses are Gaussian states with gauge- and translation-invariant quasifree parts.
引用
收藏
页数:17
相关论文
共 23 条
[1]  
[Anonymous], 1990, An invitation to the algebra of the canonical commutation relation
[2]   Discriminating states:: The quantum Chernoff bound [J].
Audenaert, K. M. R. ;
Calsamiglia, J. ;
Munoz-Tapia, R. ;
Bagan, E. ;
Masanes, Ll. ;
Acin, A. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2007, 98 (16)
[3]   Asymptotic error rates in quantum hypothesis testing [J].
Audenaert, K. M. R. ;
Nussbaum, M. ;
Szkola, A. ;
Verstraete, F. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 279 (01) :251-283
[4]   An ergodic theorem for the quantum relative entropy [J].
Bjelakovic, I ;
Siegmund-Schultze, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 247 (03) :697-712
[5]  
Bjelakovic I., ARXIVQUANTPH0307170
[6]  
Bratteli O, 1981, OPERATOR ALGEBRAS QU, VII
[7]   Quantum Chernoff bound as a measure of distinguishability between density matrices:: Application to qubit and Gaussian states [J].
Calsamiglia, J. ;
Munoz-Tapia, R. ;
Masanes, Ll. ;
Acin, A. ;
Bagan, E. .
PHYSICAL REVIEW A, 2008, 77 (03)
[8]  
Davies E. B., 1976, Quantum Theory of Open Systems
[9]  
Dembo A., 1998, APPL MATH, V38
[10]  
Grenander U, 1958, California Monographs in Mathematical Sciences