Linearized Galerkin FEMs for Nonlinear Time Fractional Parabolic Problems with Non-smooth Solutions in Time Direction

被引:116
作者
Li, Dongfang [1 ,2 ]
Wu, Chengda [3 ]
Zhang, Zhimin [4 ,5 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Hubei, Peoples R China
[3] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[4] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[5] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
中国国家自然科学基金;
关键词
Time fractional parabolic problems; Unconditional convergence; Optimal error estimates; Linearized schemes; DIFFUSION;
D O I
10.1007/s10915-019-00943-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Newton linearized Galerkin finite element method is proposed to solve nonlinear time fractional parabolic problems with non-smooth solutions in time direction. Iterative processes or corrected schemes become dispensable by the use of the Newton linearized method and graded meshes in the temporal direction. The optimal error estimate in the L2-norm is obtained without any time step restrictions dependent on the spatial mesh size. Such unconditional convergence results are proved by including the initial time singularity into concern, while previous unconditional convergent results always require continuity and boundedness of the temporal derivative of the exact solution. Numerical experiments are conducted to confirm the theoretical results.
引用
收藏
页码:403 / 419
页数:17
相关论文
共 40 条
[1]  
Agarwal P.R., 2012, NONOSCILLATION THEOR
[2]  
[Anonymous], 2012, Lecture Notes in Computational Science and Engineering
[3]  
[Anonymous], 1997, SPRINGER SERIES COMP
[4]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[5]  
BRUNNER H, 1985, MATH COMPUT, V45, P417, DOI 10.1090/S0025-5718-1985-0804933-3
[6]   Numerical simulations of 2D fractional subdiffusion problems [J].
Brunner, Hermann ;
Ling, Leevan ;
Yamamoto, Masahiro .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (18) :6613-6622
[7]   IMPLICIT-EXPLICIT DIFFERENCE SCHEMES FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONSMOOTH SOLUTIONS [J].
Cao, Wanrong ;
Zeng, Fanhai ;
Zhang, Zhongqiang ;
Karniadakis, George Em .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05) :A3070-A3093
[8]   A multi-domain spectral method for time-fractional differential equations [J].
Chen, Feng ;
Xu, Qinwu ;
Hesthaven, Jan S. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 :157-172
[9]   Linearized compact ADI schemes for nonlinear time-fractional Schrodinger equations [J].
Chen, Xiaoli ;
Di, Yana ;
Duan, Jinqiao ;
Li, Dongfang .
APPLIED MATHEMATICS LETTERS, 2018, 84 :160-167
[10]  
Chen YZ, 1998, Translations of mathematical monographs, V174