MICROWAVE SENSING TECHNOLOGY USING ORBITAL ANGULAR MOMENTUM Overview of Its Advantages

被引:66
作者
Liu, Kang [1 ]
Cheng, Yongqiang [1 ]
Li, Xiang [1 ]
Gao, Yue [2 ,3 ]
机构
[1] Natl Univ Def Technol, Changsha, Hunan, Peoples R China
[2] Queen Mary Univ London, Sch Elect Engn & Comp Sci, Antennas & Signal Proc, London, England
[3] Queen Mary Univ London, Sch Elect Engn & Comp Sci, Whitespace Machine Commun Lab, London, England
来源
IEEE VEHICULAR TECHNOLOGY MAGAZINE | 2019年 / 14卷 / 02期
基金
中国国家自然科学基金;
关键词
COMMUNICATION;
D O I
10.1109/MVT.2018.2890673
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Industry and academia have agreed that the vortex electromagnetic (EM) wave carrying orbital angular momentum (OAM) provides a dynamic freedom that can enhance radar techniques. For sensing applications in particular, OAM has the potential to improve the performance of conventional object-detection and imaging systems, i.e., OAM-based sensing. To help readers understand this crucial technology, this article offers a comprehensive overview of state-of-the-art OAM-based sensing, including characteristics of the OAM-carrying field, principles of EM vortex imaging and rotational Doppler detection, advantages over conventional systems, and the OAM-generation approach. Several open questions that offer promising ideas to inspire more research in this emerging area are also included. This article presents insights to guide the design and practice of OAMbased sensing systems. © 2019 IEEE.
引用
收藏
页码:112 / 118
页数:7
相关论文
共 19 条
[1]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[2]   Orbital Angular Momentum Generation and Detection by Geometric-Phase Based Metasurfaces [J].
Chen, Menglin L. N. ;
Jiang, Li Jun ;
Sha, Wei E. I. .
APPLIED SCIENCES-BASEL, 2018, 8 (03)
[3]   Is Orbital Angular Momentum (OAM) Based Radio Communication an Unexploited Area? [J].
Edfors, Ove ;
Johansson, Anders J. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (02) :1126-1131
[4]  
Guo Guirong, 2013, Journal of National University of Defense Technology, V35, P71
[5]   Detection of a Spinning Object Using Light's Orbital Angular Momentum [J].
Lavery, Martin P. J. ;
Speirits, Fiona C. ;
Barnett, Stephen M. ;
Padgett, Miles J. .
SCIENCE, 2013, 341 (6145) :537-540
[6]   Beating the Rayleigh limit: Orbital-angular-momentum-based super-resolution diffraction tomography [J].
Li, Lianlin ;
Li, Fang .
PHYSICAL REVIEW E, 2013, 88 (03)
[7]   High-Resolution Electromagnetic Vortex Imaging Based on Sparse Bayesian Learning [J].
Liu, Kang ;
Li, Xiang ;
Gao, Yue ;
Cheng, Yongqiang ;
Wang, Hongqiang ;
Qin, Yuliang .
IEEE SENSORS JOURNAL, 2017, 17 (21) :6918-6927
[8]   Super-resolution radar imaging based on experimental OAM beams [J].
Liu, Kang ;
Cheng, Yongqiang ;
Gao, Yue ;
Li, Xiang ;
Qin, Yuliang ;
Wang, Hongqiang .
APPLIED PHYSICS LETTERS, 2017, 110 (16)
[9]   Generation of Orbital Angular Momentum Beams for Electromagnetic Vortex Imaging [J].
Liu, Kang ;
Cheng, Yongqiang ;
Li, Xiang ;
Qin, Yuliang ;
Wang, Hongqiang ;
Jiang, Yanwen .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2016, 15 :1873-1876
[10]   Orbital-Angular-Momentum-Based Electromagnetic Vortex Imaging [J].
Liu, Kang ;
Cheng, Yongqiang ;
Yang, Zhaocheng ;
Wang, Hongqiang ;
Qin, Yuliang ;
Li, Xiang .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2015, 14 :711-714