Dirac operators on quantum flag manifolds

被引:29
作者
Krähmer, U [1 ]
机构
[1] Univ Leipzig, Fak Math & Informat, D-04109 Leipzig, Germany
关键词
noncommutative geometry; quantum homogeneous spaces;
D O I
10.1023/B:MATH.0000027748.64886.23
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A Dirac operator D on quantized irreducible generalized flag manifolds is defined. This yields a Hilbert space realization of the covariant first-order differential calculi constructed by I. Heckenberger and S. Kolb. All differentials df = i[D,f] are bounded operators. In the simplest case of Podles quantum sphere one obtains the spectral triple found by L. Dabrowski and A.
引用
收藏
页码:49 / 59
页数:11
相关论文
共 20 条
[1]  
[Anonymous], 2003, NONCOMMUTATIVE GEOME
[2]  
Baston R. J, 1989, PENROSE TRANSFORM
[3]   SPECTRUM OF THE DIRAC OPERATOR ON COMPLEX PROJECTIVE-SPACE P2Q-1(C) [J].
CAHEN, M ;
FRANC, A ;
GUTT, S .
LETTERS IN MATHEMATICAL PHYSICS, 1989, 18 (02) :165-176
[4]  
Cahen Michel, 1988, S STEVIN, V62, P209
[5]   Equivariant spectral triples on the quantum SU(2) group [J].
Chakraborty, PS ;
Pal, A .
K-THEORY, 2003, 28 (02) :107-126
[6]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[7]  
Friedrich T, 2000, DIRAC OPERATORS RIEM
[8]  
Fulton W., 2004, REPRESENT THEOR, V129
[9]  
GOSWAMI D, MATHPH0204010
[10]   Geometry of quantum homogeneous vector bundles and representation theory of quantum groups I [J].
Gover, AR ;
Zhang, RB .
REVIEWS IN MATHEMATICAL PHYSICS, 1999, 11 (05) :533-552