A FULLY DISCRETE SEMI-LAGRANGIAN SCHEME FOR A FIRST ORDER MEAN FIELD GAME PROBLEM

被引:69
作者
Carlini, E. [1 ]
Silva, F. J. [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[2] Univ Limoges, XLIM, DMI, Fac Sci & Tech,CNRS UMR 7252, F-87060 Limoges, France
关键词
mean field games; first order system; semi-Lagrangian schemes; numerical methods; APPROXIMATION; CONVERGENCE;
D O I
10.1137/120902987
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we propose a fully discrete semi-Lagrangian scheme for a first order mean field game system. We prove that the resulting discretization admits at least one solution and, in the scalar case, we prove a convergence result for the scheme. Numerical simulations and examples are also discussed.
引用
收藏
页码:45 / 67
页数:23
相关论文
共 28 条
[1]   MEAN FIELD GAMES: CONVERGENCE OF A FINITE DIFFERENCE METHOD [J].
Achdou, Yves ;
Camilli, Fabio ;
Capuzzo-Dolcetta, Italo .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (05) :2585-2612
[2]   MEAN FIELD GAMES: NUMERICAL METHODS FOR THE PLANNING PROBLEM [J].
Achdou, Yves ;
Camilli, Fabio ;
Capuzzo-Dolcetta, Italo .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (01) :77-109
[3]   MEAN FIELD GAMES: NUMERICAL METHODS [J].
Achdou, Yves ;
Capuzzo-Dolcetta, Italo .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (03) :1136-1162
[4]  
Ambrosio L., 2006, Gradient Flows in Metric Spaces and in the Space of Probability Measures
[5]  
[Anonymous], 1990, SYSTEMS CONTROL FDN
[6]  
[Anonymous], 2007, NUMERICAL MATH, DOI DOI 10.1007/B98885
[7]  
[Anonymous], 2004, PROGR NONLINEAR DIFF
[8]  
AUCHDOU Y., DISCRETE B IN PRESS
[9]   MARKETS WITH A CONTINUUM OF TRADERS [J].
AUMANN, RJ .
ECONOMETRICA, 1964, 32 (1-2) :39-50
[10]  
Bardi M., 1997, SYSTEMS CONTROL FDN