A Modified Asymptotical Regularization of Nonlinear Ill-Posed Problems

被引:5
作者
Pornsawad, Pornsarp [1 ,2 ]
Sapsakul, Nantawan [1 ,2 ]
Bockmann, Christine [3 ]
机构
[1] Silpakorn Univ, Fac Sci, Dept Math, 6 Rachamakka Nai Rd, Nakhon Pathom 73000, Thailand
[2] Mahidol Univ, Ctr Excellence Math, Rama 6 Rd, Bangkok 10400, Thailand
[3] Univ Potsdam, Inst Math, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
关键词
nonlinear operator; regularization; discrepancy principle; asymptotic method; optimal rate; LANDWEBER ITERATION;
D O I
10.3390/math7050419
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the continuous version of modified iterative Runge-Kutta-type methods for nonlinear inverse ill-posed problems proposed in a previous work. The convergence analysis is proved under the tangential cone condition, a modified discrepancy principle, i. e., the stopping time T is a solution of k F ( x d( T)) y dk = td+ for some d+ > d, and an appropriate source condition. We yield the optimal rate of convergence.
引用
收藏
页数:19
相关论文
共 19 条
[1]  
[Anonymous], 2013, NUMERICAL METHODS SO
[2]   Iterative Runge-Kutta-type methods for nonlinear ill-posed problems [J].
Boeckmann, C. ;
Pornsawad, P. .
INVERSE PROBLEMS, 2008, 24 (02)
[3]   The Effects of Pade Numerical Integration in Simulation of Conservative Chaotic Systems [J].
Butusov, Denis ;
Karimov, Artur ;
Tutueva, Aleksandra ;
Kaplun, Dmitry ;
Nepomuceno, Erivelton G. .
ENTROPY, 2019, 21 (04)
[4]  
Engl H. W., 1996, REGULARIZATION INVER
[5]   Robust Pade Approximation via SVD [J].
Gonnet, Pedro ;
Guettel, Stefan ;
Trefethen, Lloyd N. .
SIAM REVIEW, 2013, 55 (01) :101-117
[6]   A regularizing Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems [J].
Hanke, M .
INVERSE PROBLEMS, 1997, 13 (01) :79-95
[7]   A CONVERGENCE ANALYSIS OF THE LANDWEBER ITERATION FOR NONLINEAR ILL-POSED PROBLEMS [J].
HANKE, M ;
NEUBAUER, A ;
SCHERZER, O .
NUMERISCHE MATHEMATIK, 1995, 72 (01) :21-37
[8]  
HANSEN PC, 1994, REGULARIZATION TOOLS
[9]   Analysis of profile functions for general linear regularization methods [J].
Hofmann, Bernd ;
Mathe, Peter .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) :1122-1141
[10]   Convergence analysis of a two-point gradient method for nonlinear ill-posed problems [J].
Hubmer, Simon ;
Ramlau, Ronny .
INVERSE PROBLEMS, 2017, 33 (09)