Long non-coding RNA GAS5 inhibits ovarian cancer cell proliferation via the control of microRNA-21 and SPRY2 expression

被引:60
作者
Ma, Nana [1 ]
Li, Shaoru [1 ]
Zhang, Quanhua [1 ]
Wang, Hongmei [1 ]
Qin, Haixia [1 ]
Wang, Shijin [1 ]
机构
[1] Xinxiang Med Univ, Affiliated Hosp 1, Dept Gynecol & Obstet, 88 Jiankang Rd, Weihui 453100, Henan, Peoples R China
关键词
ovarian cancer; long non-coding RNA; microRNA; Sprouty homolog 2; proliferation; TUMOR-SUPPRESSOR; MIR-21; ACTIVATION; MIGRATION; INVASION; PROTEIN; STATISTICS; RESISTANCE;
D O I
10.3892/etm.2018.6188
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
In recent decades, numerous long non-coding (lnc) RNAs, including growth arrest-specific transcript 5 (GAS5), have been demonstrated to exert promoting or suppressive effects in human cancers. Decreased expression of the lncRNA GAS5 was reported to promote cell proliferation, migration and invasion and indicate poor prognosis in ovarian cancer. However, the exact underlying molecular mechanism through which GAS5 is involved in ovarian cancer growth remains unknown. The present study aimed to investigate the regulatory mechanism of GAS5 in ovarian cancer cell proliferation. Quantitative polymerase chain reaction and western blot analysis were used to examine RNA and protein expression, respectively. An MTT assay was used to examine cell proliferation. A luciferase reporter gene assay was conducted to verify the targeting relationship. It was identified that the expression levels of GAS5 and Sprouty homolog 2 (SPRY2) were significantly downregulated, while the expression level of microRNA (miR)-21 was significantly upregulated in ovarian cancer tissues and cell lines compared with adjacent non-tumor tissues and normal ovarian epithelial cells, respectively. Dowuregulation of GAS5 was significantly associated with advanced clinical stage. Luciferase assay data indicated that miR-21 was a direct target of GASS and that SPRY2 was a target gene of miR-21 in ovarian cancer-derived A2780 cells. GAS5 overexpression significantly inhibited the proliferation of ovarian cancer cells, which was accompanied by the downregulation of miR-21 and the upregulation of SPRY2. The overexpression of miR-21 caused a significant decrease in A2780 cell proliferation, which was accompanied by reduced SPRY2 expression. Furthermore, miR-21 overexpression attenuated the suppressive effects of GAS5 on A2780 cell proliferation and rescued the promoting effects of GAS5 on SPRY2 expression. In addition, the knockdown of SPRY2 also rescued the suppressive effects of GAS5 on the proliferation of A2780 cells. In summary, our study demonstrates that GAS5 exerts a suppressive effect on the proliferation of ovarian cancer cells, at least in part via the inhibition of miR-21 expression and subsequent increased SPRY2 expression. These findings suggest that the GAS5/miR-21/SPRY2 signaling pathway may be a potential therapeutic target in ovarian cancer.
引用
收藏
页码:73 / 82
页数:10
相关论文
共 36 条
[1]  
[Anonymous], ONCOL RES
[2]   Targeting miR-21-3p inhibits proliferation and invasion of ovarian cancer cells [J].
Baez-Vega, Perla M. ;
Vargas, Ileabett M. Echevarria ;
Valiyeva, Fatma ;
Rosado, Joel Encarnacion ;
Roman, Adriana ;
Flores, Josean ;
Marcos-Martinez, Maria J. ;
Vivas-Mejia, Pablo E. .
ONCOTARGET, 2016, 7 (24) :36321-36337
[3]   GAS5 knockdown reduces the chemo-sensitivity of non-small cell lung cancer (NSCLC) cell to cisplatin (DDP) through regulating miR-21/PTEN axis [J].
Cao, Lin ;
Chen, Jia ;
Ou, Baiqing ;
Liu, Cuizhong ;
Zou, Yan ;
Chen, Qiong .
BIOMEDICINE & PHARMACOTHERAPY, 2017, 93 :570-579
[4]   Tesk1 interacts with spry2 to abrogate its inhibition of ERK phosphorylation downstream of receptor tyrosine kinase signaling [J].
Chandramouli, Sumana ;
Yu, Chye Yun ;
Yusoff, Permeen ;
Lao, Dieu-Hung ;
Leong, Hwei Fen ;
Mizuno, Kensaku ;
Guy, Graeme R. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (03) :1679-1691
[5]   Emerging Roles for Natural MicroRNA Sponges [J].
Ebert, Margaret S. ;
Sharp, Phillip A. .
CURRENT BIOLOGY, 2010, 20 (19) :R858-R861
[6]   MicroRNA-21-mediated regulation of Sprouty2 protein expression enhances the cytotoxic effect of 5-fluorouracil and metformin in colon cancer cells [J].
Feng, Yin-Hsun ;
Wu, Chao-Liang ;
Shiau, Al-Li ;
Lee, Jenq-Chang ;
Chang, Jan-Gowth ;
Lu, Pei-Jung ;
Tung, Chao-Ling ;
Feng, Li-Yia ;
Huang, Wen-Tsung ;
Tsao, Chao-Jung .
INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2012, 29 (05) :920-926
[7]   Long non-coding RNA growth arrest-specific transcript 5 is involved in ovarian cancer cell apoptosis through the mitochondria-mediated apoptosis pathway [J].
Gao, Jiayin ;
Liu, Meimei ;
Zou, Yiting ;
Mao, Min ;
Shen, Tingting ;
Zhang, Chen ;
Song, Shasha ;
Sun, Meiling ;
Zhang, Song ;
Wang, Beidi ;
Zhu, Daling ;
Li, Peiling .
ONCOLOGY REPORTS, 2015, 34 (06) :3212-3221
[8]   Long noncoding RNA GAS5 suppresses the migration and invasion of hepatocellular carcinoma cells via miR-21 [J].
Hu, Litian ;
Ye, Hua ;
Huang, Guangming ;
Luo, Fei ;
Liu, Yawei ;
Liu, Yi ;
Yang, Xiaojun ;
Shen, Jian ;
Liu, Qizhan ;
Zhang, Jianping .
TUMOR BIOLOGY, 2016, 37 (02) :2691-2702
[9]   Long Noncoding RNA CCAT2 Knockdown Suppresses Tumorous Progression by Sponging miR-424 in Epithelial Ovarian Cancer [J].
Hua, Fu ;
Li, Chang-Hua ;
Chen, Xiao-Gang ;
Liu, Xiao-Ping .
ONCOLOGY RESEARCH, 2018, 26 (02) :241-247
[10]   Lentiviral CRISPR/Cas9 vector mediated miR-21 gene editing inhibits the epithelial to mesenchymal transition in ovarian cancer cells [J].
Huo, Wenying ;
Zhao, Guannan ;
Yin, Jinggang ;
Ouyang, Xuan ;
Wang, Yinan ;
Yang, Chuanhe ;
Wang, Baojing ;
Dong, Peixin ;
Wang, Zhixiang ;
Watari, Hidemichi ;
Chaum, Edward ;
Pfeffer, Lawrence M. ;
Yue, Junming .
JOURNAL OF CANCER, 2017, 8 (01) :57-64