A family of elliptic curve pseudorandom binary sequences

被引:11
作者
Liu, Huaning [1 ]
机构
[1] NW Univ Xian, Dept Math, Xian 710069, Shaanxi, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Binary sequence; Well-distribution; Correlation; Linear complexity; Collision; Avalanche effect; CONSTRUCTION; GENERATORS;
D O I
10.1007/s10623-013-9822-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we give a new family of elliptic curve pseudorandom binary sequences, and study the well-distribution, correlation, linear complexity, collision and avalanche effect of the family of sequences, by using the estimate of exponential sums over elliptic curves.
引用
收藏
页码:251 / 265
页数:15
相关论文
共 26 条
[1]  
Beelen PHT, 2002, FINITE FIELDS WITH APPLICATIONS TO CODING THEORY, CRYPTOGRAPHY AND RELATED AREAS, P37
[2]  
Brandsttter N., 2006, Period. Math. Hung, V52, P1, DOI [10.1007/s10998-006-0008-1, DOI 10.1007/S10998-006-0008-1]
[3]   On finite pseudorandom binary sequences VII:: The measures of pseudorandomness [J].
Cassaigne, J ;
Mauduit, C ;
Sárközy, A .
ACTA ARITHMETICA, 2002, 103 (02) :97-118
[4]   Elliptic curve analogue of Legendre sequences [J].
Chen, Zhixiong .
MONATSHEFTE FUR MATHEMATIK, 2008, 154 (01) :1-10
[5]   A construction of binary sequences from elliptic curves [J].
Chen, Zhixiong ;
Wu, Chenhuang .
2009 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND COMPUTER SCIENCE, VOL 1, PROCEEDINGS, 2009, :137-140
[6]  
El Mahassni E, 2002, DISCRETE MATH & THEO, P257
[7]  
Gong G, 2002, DISCRETE MATH & THEO, P182
[8]  
Gong G., 1998, CORR9853 U WAT
[9]  
Gyarmati K., PUBLICATION IN PRESS
[10]   Elliptic curve analogues of a pseudorandom generator [J].
Gyarmati, Katalin .
PERIODICA MATHEMATICA HUNGARICA, 2012, 64 (02) :119-130