Intragenic motifs regulate the transcriptional complexity of Pkhd1/PKHD1

被引:26
作者
Boddu, Ravindra [1 ,2 ]
Yang, Chaozhe [2 ,3 ]
O'Connor, Amber K. [3 ]
Hendrickson, Robert Curtis [5 ]
Boone, Braden [4 ]
Cui, Xiangqin [6 ]
Garcia-Gonzalez, Miguel [7 ]
Igarashi, Peter [8 ]
Onuchic, Luiz F. [9 ]
Germino, Gregory G. [10 ,11 ]
Guay-Woodford, Lisa M. [2 ,3 ,12 ]
机构
[1] Univ Alabama Birmingham, Dept Cell Biol, Birmingham, AL 35294 USA
[2] Univ Alabama Birmingham, Dept Genet, Birmingham, AL 35294 USA
[3] Childrens Natl Med Ctr, Ctr Translat Sci, Washington, DC 20010 USA
[4] Hudson Alpha Inst, Huntsville, AL 35806 USA
[5] Univ Alabama Birmingham, Dept Microbiol, Birmingham, AL 35294 USA
[6] Univ Alabama Birmingham, Dept Biostat, Birmingham, AL 35294 USA
[7] Complexo Hosp Santiago de Compostela, Inst Invest Sanitaria IDIS, Santiago De Compostela, Spain
[8] Univ Texas Southwestern Sch Med, Dept Med, Dallas, TX 75235 USA
[9] Univ Sao Paulo, Dept Med, BR-01246903 Sao Paulo, Brazil
[10] Johns Hopkins Univ, Sch Med, Div Nephrol, Baltimore, MD 21205 USA
[11] NIDDK, NIH, Bethesda, MD 20892 USA
[12] Childrens Natl Med Ctr, Washington, DC 20010 USA
来源
JOURNAL OF MOLECULAR MEDICINE-JMM | 2014年 / 92卷 / 10期
关键词
Autosomal recessive polycystic kidney disease; PKHD1; Alternative splicing; Exon splice enhancers; POLYCYSTIC KIDNEY-DISEASE; MOUSE MODEL; CLINICAL-EXPERIENCE; PRIMARY CILIA; PKHD1; ARPKD; BILIARY; RNA; IDENTIFICATION; PROTEIN;
D O I
10.1007/s00109-014-1185-7
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Autosomal recessive polycystic kidney disease (ARPKD) results from mutations in the human PKHD1 gene. Both this gene, and its mouse ortholog, Pkhd1, are primarily expressed in renal and biliary ductal structures. The mouse protein product, fibrocystin/polyductin complex (FPC), is a 445-kDa protein encoded by a 67-exon transcript that spans > 500 kb of genomic DNA. In the current study, we observed multiple alternatively spliced Pkhd1 transcripts that varied in size and exon composition in embryonic mouse kidney, liver, and placenta samples, as well as among adult mouse pancreas, brain, heart, lung, testes, liver, and kidney. Using reverse transcription PCR and RNASeq, we identified 22 novel Pkhd1 kidney transcripts with unique exon junctions. Various mechanisms of alternative splicing were observed, including exon skipping, use of alternate acceptor/donor splice sites, and inclusion of novel exons. Bioinformatic analyses identified, and exon-trapping minigene experiments validated, consensus binding sites for serine/arginine-rich proteins that modulate alternative splicing. Using site-directed mutagenesis, we examined the functional importance of selected splice enhancers. In addition, we demonstrated that many of the novel transcripts were polysome bound, thus likely translated. Finally, we determined that the human PKHD1 R760H missense variant alters a splice enhancer motif that disrupts exon splicing in vitro and is predicted to truncate the protein. Taken together, these data provide evidence of the complex transcriptional regulation of Pkhd1/PKHD1 and identified motifs that regulate its splicing. Our studies indicate that Pkhd1/PKHD1 transcription is modulated, in part by intragenic factors, suggesting that aberrant PKHD1 splicing represents an unappreciated pathogenic mechanism in ARPKD.
引用
收藏
页码:1045 / 1056
页数:12
相关论文
共 35 条
[1]  
Aachen University R, 2013, MUT DAT AUT REC POL
[2]   Epitope-Tagged Pkhd1 Tracks the Processing, Secretion, and Localization of Fibrocystin [J].
Bakeberg, Jason L. ;
Tammachote, Rachaneekorn ;
Woollard, John R. ;
Hogan, Marie C. ;
Tuan, Han-Fang ;
Li, Ming ;
van Deursen, Jan M. ;
Wu, Yanhong ;
Huang, Bing Q. ;
Torres, Vicente E. ;
Harris, Peter C. ;
Ward, Christopher J. .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2011, 22 (12) :2266-2277
[3]   INCREASED EXON-TRAPPING EFFICIENCY THROUGH MODIFICATIONS TO THE PSPL3 SPLICING VECTOR [J].
BURN, TC ;
CONNORS, TD ;
KLINGER, KW ;
LANDES, GM .
GENE, 1995, 161 (02) :183-187
[4]   ESEfinder: a web resource to identify exonic splicing enhancers [J].
Cartegni, L ;
Wang, JH ;
Zhu, ZW ;
Zhang, MQ ;
Krainer, AR .
NUCLEIC ACIDS RESEARCH, 2003, 31 (13) :3568-3571
[5]   Functional analysis of the polypyrimidine tract in pre-mRNA splicing [J].
Coolidge, CJ ;
Seely, RJ ;
Patton, JG .
NUCLEIC ACIDS RESEARCH, 1997, 25 (04) :888-895
[6]   RNA and Disease [J].
Cooper, Thomas A. ;
Wan, Lili ;
Dreyfuss, Gideon .
CELL, 2009, 136 (04) :777-793
[7]   Biliary and pancreatic dysgenesis in mice harboring a mutation in Pkhd1 [J].
Gallagher, Anna-Rachel ;
Esquivel, Ernie L. ;
Briere, Tiffany S. ;
Tian, Xin ;
Mitobe, Michihiro ;
Menezes, Luis F. ;
Markowitz, Glen S. ;
Jain, Dhanpat ;
Onuchic, Luiz F. ;
Somlo, Stefan .
AMERICAN JOURNAL OF PATHOLOGY, 2008, 172 (02) :417-429
[8]   Autosomal recessive polycystic kidney disease: The clinical experience in North America [J].
Guay-Woodford, LM ;
Desmond, RA .
PEDIATRICS, 2003, 111 (05) :1072-1080
[9]   Defining the roles and interactions of PTB [J].
Kafasla, Panagiota ;
Mickleburgh, Ian ;
Llorian, Miriam ;
Coelho, Miguel ;
Gooding, Clare ;
Cherny, Dmitry ;
Joshi, Amar ;
Kotik-Kogan, Olga ;
Curry, Stephen ;
Eperon, Ian C. ;
Jackson, Richard J. ;
Smith, Christopher W. J. .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2012, 40 :815-820
[10]   Functional consequences of developmentally regulated alternative splicing [J].
Kalsotra, Auinash ;
Cooper, Thomas A. .
NATURE REVIEWS GENETICS, 2011, 12 (10) :715-729