Peptidic Ligands to Control the Three-Dimensional Self-Assembly of Quantum Rods in Aqueous Media

被引:8
作者
Bizien, Thomas [1 ,2 ]
Even-Hernandez, Pascale [1 ]
Postic, Marie [2 ]
Mazari, Elsa [3 ]
Chevance, Soizic [1 ]
Bondon, Arnaud [1 ]
Hamon, Cyrille [1 ]
Troadec, David [4 ]
Largeau, Ludovic [3 ]
Dupuis, Christophe [3 ]
Gosse, Charlie [3 ]
Artzner, Franck [2 ]
Marchi, Valerie [1 ]
机构
[1] Univ Rennes 1, Inst Sci Chim Rennes, CNRS, UMR 6226, F-35042 Rennes, France
[2] Univ Rennes 1, Inst Phys Rennes, CNRS, UMR 6251, F-35042 Rennes, France
[3] CNRS, LPN, F-91460 Marcoussis, France
[4] Univ Lille 1, Ctr Hyperfrequences & Semicond, CNRS, IEMN,UMR 8520, F-59655 Villeneuve Dascq, France
关键词
quantum rods; self-assembly; peptide; ligands exchange; ordered structures; SURFACE-CHEMISTRY; DOTS; NANOCRYSTALS; NANORODS; CDSE; PHOTOLUMINESCENCE; NMR; H-2;
D O I
10.1002/smll.201400300
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The use of peptidic ligands is validated as a generic chemical platform allowing one to finely control the organization in solid phase of semiconductor nanorods originally dispersed in an aqueous media. An original method to generate, on a macroscopic scale and with the desired geometry, three-dimensional supracrystals composed of quantum rods is introduced. In a first step, nanorods are transferred in an aqueous phase thanks to the substitution of the original capping layer by peptidic ligands. Infrared and nuclear magnetic resonance spectroscopy data prove that the exchange is complete; fluorescence spectroscopy demonstrates that the emitter optical properties are not significantly altered; electrophoresis and dynamic light scattering experiments assess the good colloidal stability of the resulting aqueous suspension. In a second step, water evaporation in a microstructured environment yields superstructures with a chosen geometry and in which nanorods obey a smectic B arrangement, as shown by electron microscopy. Incidentally, bulk drying in a capillary tube generates a similar local order, as evidenced by small angle X-ray scattering.
引用
收藏
页码:3707 / 3716
页数:10
相关论文
共 48 条
[21]   Crystallization of Fluorescent Quantum Dots within a Three-Dimensional Bio-Organic Template of Actin Filaments and Lipid Membranes [J].
Henry, Etienne ;
Dif, Aurelien ;
Schmutz, Marc ;
Legoff, Loic ;
Amblard, Francois ;
Marchi-Artzner, Valerie ;
Artzner, Franck .
NANO LETTERS, 2011, 11 (12) :5443-5448
[22]   A Solution NMR Toolbox for Characterizing the Surface Chemistry of Colloidal Nanocrystals [J].
Hens, Zeger ;
Martins, Jose C. .
CHEMISTRY OF MATERIALS, 2013, 25 (08) :1211-1221
[23]   Linearly polarized emission from colloidal semiconductor quantum rods [J].
Hu, JT ;
Li, LS ;
Yang, WD ;
Manna, L ;
Wang, LW ;
Alivisatos, AP .
SCIENCE, 2001, 292 (5524) :2060-2063
[24]   WATER SUPPRESSION THAT WORKS - EXCITATION SCULPTING USING ARBITRARY WAVE-FORMS AND PULSED-FIELD GRADIENTS [J].
HWANG, TL ;
SHAKA, AJ .
JOURNAL OF MAGNETIC RESONANCE SERIES A, 1995, 112 (02) :275-279
[25]   In vitro and In vivo Optical Imaging Using Water-Dispersible, Noncytotoxic, Luminescent, Silica-Coated Quantum Rods [J].
Kumar, Rajiv ;
Ding, Hong ;
Hu, Rui ;
Yong, Ken-Tye ;
Roy, Indrajit ;
Bergey, Earl J. ;
Prasad, Paras N. .
CHEMISTRY OF MATERIALS, 2010, 22 (07) :2261-2267
[26]  
Lakowicz J.R., 2009, Principles of fluorescence spectroscopy
[27]   Electronic Structures of the CdSe/CdS Core-Shell Nanorods [J].
Luo, Ying ;
Wang, Lin-Wang .
ACS NANO, 2010, 4 (01) :91-98
[28]   Polyethylene glycol-based bidentate ligands to enhance quantum dot and gold nanoparticle stability in biological media [J].
Mei, Bing C. ;
Susumu, Kimihiro ;
Medintz, Igor L. ;
Mattoussi, Hedi .
NATURE PROTOCOLS, 2009, 4 (03) :412-423
[29]   Surface Chemistry of Colloidal PbSe Nanocrystals [J].
Moreels, Iwan ;
Fritzinger, Bernd ;
Martins, Jose C. ;
Hens, Zeger .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (45) :15081-15086
[30]   Reaction chemistry and ligand exchange at cadmium-selenide nanocrystal surfaces [J].
Owen, Jonathan S. ;
Park, Jungwon ;
Trudeau, Paul-Emile ;
Alivisatos, A. Paul .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (37) :12279-+