Real-Time Estimation of Temperature Distribution for Cylindrical Lithium-Ion Batteries Under Boundary Cooling

被引:37
作者
Wang, Mingliang [1 ]
Li, Han-Xiong [2 ]
机构
[1] City Univ Hong Kong, Kowloon Tong, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Dept Syst Engn & Engn Management, Kowloon Tong, Hong Kong, Peoples R China
关键词
Boundary cooling; cylindrical lithium-ion batteries; data-based identification and optimization; dual-extended Kalman filter (KF); Karhunen-Loeve (K-L) decomposition; two-dimensional (2-D) thermal process; INTERNAL TEMPERATURE; THERMAL-MODEL; IMPEDANCE; CELLS; DECOMPOSITION; SYSTEMS; HEALTH; ISSUES;
D O I
10.1109/TIE.2016.2624720
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a real-time estimation method for the temperature distribution of cylindrical batteries under boundary air cooling. A space-/ timeseparation- based analytical model is developed using Karhunen-Loeve decomposition and Galerkin's method. The model parameters can be identified and optimized using data-based approaches. The developed analytical model demonstrates the robustness to variation of thermal parameters. However, the change of boundary cooling will significantly degrade the performance of the developed analytical model. For the known boundary cooling, the compensation model for cooling effects can be derived to improve the modeling performance. For the unknown boundary cooling in real practice, a dual-extended Kalman filter can be used to simultaneously estimate coupled parameters and convection coefficient in the compensation model. The proposed method can achieve satisfactory performance in the battery duty-cycle experiments.
引用
收藏
页码:2316 / 2324
页数:9
相关论文
共 40 条
[31]   Online Adaptive Parameter Identification and State-of-Charge Coestimation for Lithium-Polymer Battery Cells [J].
Rahimi-Eichi, Habiballah ;
Baronti, Federico ;
Chow, Mo-Yuen .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2014, 61 (04) :2053-2061
[32]   Sensorless battery temperature measurements based on electrochemical impedance spectroscopy [J].
Raijmakers, L. H. J. ;
Danilov, D. L. ;
van Lammeren, J. P. M. ;
Lammers, M. J. G. ;
Notten, P. H. L. .
JOURNAL OF POWER SOURCES, 2014, 247 :539-544
[33]   Battery internal temperature estimation by combined impedance and surface temperature measurement [J].
Richardson, Robert R. ;
Ireland, Peter T. ;
Howey, David A. .
JOURNAL OF POWER SOURCES, 2014, 265 :254-261
[34]   Measurement of the internal cell temperature via impedance: Evaluation and application of a new method [J].
Schmidt, Jan Philipp ;
Arnold, Stefan ;
Loges, Andre ;
Werner, Daniel ;
Wetzel, Thomas ;
Ivers-Tiffee, Ellen .
JOURNAL OF POWER SOURCES, 2013, 243 :110-117
[35]   Enhanced Identification of Battery Models for Real-Time Battery Management [J].
Sitterly, Mark ;
Wang, Le Yi ;
Yin, G. George ;
Wang, Caisheng .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2011, 2 (03) :300-308
[36]   Monitoring dynamic thermal behavior of the carbon anode in a lithium-ion cell using a four-probe technique [J].
Srinivasan, Rengaswamy .
JOURNAL OF POWER SOURCES, 2012, 198 :351-358
[37]   Instantaneous measurement of the internal temperature in lithium-ion rechargeable cells [J].
Srinivasan, Rengaswamy ;
Carkhuff, Bliss G. ;
Butler, Michael H. ;
Baisden, Andrew C. .
ELECTROCHIMICA ACTA, 2011, 56 (17) :6198-6204
[38]  
Wan EA, 2002, DUAL EXTENDED KALMAN, P123, DOI DOI 10.1002/0471221546.CH5
[39]   Spatiotemporal modeling of internal states distribution for lithium-ion battery [J].
Wang, Mingliang ;
Li, Han-Xiong .
JOURNAL OF POWER SOURCES, 2016, 301 :261-270
[40]   Two-dimensional electrochemical-thermal coupled modeling of cylindrical LiFePO4 batteries [J].
Xu, Meng ;
Zhang, Zhuqian ;
Wang, Xia ;
Jia, Li ;
Yang, Lixin .
JOURNAL OF POWER SOURCES, 2014, 256 :233-243