On the combination of naive Bayes and decision trees for intrusion detection

被引:0
作者
Benferhat, Salem [1 ]
Tabia, Karim [2 ]
机构
[1] Univ Artois, CNRS, CRIL, Rue Jean SOUVRAZ SP18, F-62307 Lens, France
[2] Univ Mouloud Mammer, Dept Informat, Algiers, Algeria
来源
INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION JOINTLY WITH INTERNATIONAL CONFERENCE ON INTELLIGENT AGENTS, WEB TECHNOLOGIES & INTERNET COMMERCE, VOL 1, PROCEEDINGS | 2006年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Decision trees and naive bayes have been recently used as classfiers for intrusion detection problems. They present good complementarities in detecting different kinds of attacks. However, both of them generate a high number of false negatives. This paper proposes a hybrid classifier that exploits complentaries between decision trees and naive bayes. In order to reduce false negative rate, we propose to reexaminate decision trees and Bayes nets outputs by an anomaly-based detection system.
引用
收藏
页码:211 / +
页数:2
相关论文
共 11 条
[1]  
Amor N.B., 2004, P 2004 ACM S APPL CO, P420, DOI DOI 10.1145/967900.967989
[2]  
AMOR NB, 2003, PROBABILISTIC GRAPHI
[3]  
AXELSSON S, 2000, 9915
[4]  
JENSEN FV, 1996, INTRO BAYESIEN NETWO
[5]  
Kendall K.K. R., 1999, DATABASE COMPUTER AT
[6]  
Pearl J., 1989, Probabilistic reasoning in intelligent systems: networks of plausible inference, DOI DOI 10.1016/C2009-0-27609-4
[7]  
Quinlan J. R., 1987, Proceedings of the Fourth International Workshop on Machine Learning, P31
[8]  
Quinlan J. R., 2014, C4 5 PROGRAMS MACHIN
[9]  
SABHNANI M, 2004, J INTELLIGENT DATA A
[10]  
VALDES A, 2000, ACTES RECENT ADV INT, P80