Good codes from metacyclic groups

被引:9
作者
Assuena, Samir [1 ]
Milies, Cesar Polcino [2 ,3 ]
机构
[1] Ctr Univ FEI, Av Humberto de Alencar Castelo Branco 3972, BR-09850901 Sao Bernardo Do Campo, SP, Brazil
[2] Univ Sao Paulo, Inst Matemat & Estat, Caixa Postal 66281, BR-05315970 Sao Paulo, SP, Brazil
[3] Univ Fed ABC, Av Estados 5001, BR-09210580 Santo Andre, SP, Brazil
来源
RINGS, MODULES AND CODES | 2019年 / 727卷
基金
巴西圣保罗研究基金会;
关键词
Semisimple group algebras; finite groups; split metacyclic groups; primitive idempotents;
D O I
10.1090/conm/727/14623
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider semisimple group algebras F(q)G of split metacyclic groups over finite fields. We construct left codes in F(q)G in the case when the order G is p(m) l(n), where p and l are different primes such that gcd(q, p, l) = 1.
引用
收藏
页码:39 / 47
页数:9
相关论文
共 14 条
[1]   Semisimple metacyclic group algebras [J].
Bakshi, Gurmeet K. ;
Gupta, Shalini ;
Passi, Inder Bir S. .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2011, 121 (04) :379-396
[2]  
Curtis Charles W., 1962, Pure and Applied Mathematics, VXI
[3]  
Dutra FS, 2009, ALGEBRA DISCRET MATH, P28
[4]   Idempotents in group algebras and minimal abelian codes [J].
Ferraz, Raul Antonio ;
Milies, Cesar Polcino .
FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (02) :382-393
[5]  
Grassl M., BOUNDS MINIMUM DISTA
[6]  
Jacobson N., 1985, BASIC ALGEBRA
[7]   UNITS OF INTEGRAL GROUP-RINGS OF SOME METACYCLIC GROUPS [J].
JESPERS, E ;
LEAL, G ;
MILIES, CP .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1994, 37 (02) :228-237
[8]   Construction of minimal non-abelian left group codes [J].
Olteanu, Gabriela ;
Van Gelder, Inneke .
DESIGNS CODES AND CRYPTOGRAPHY, 2015, 75 (03) :359-373
[9]  
Pierce R. S., 1982, GRADUATE TEXTS MATH, V88
[10]  
Pierce R. S., 1982, GRADUATE TEXTS MATH, V9