ON PYRAMIDS AND REDUCEDNESS

被引:3
作者
Averkov, Gennadiy [1 ]
Martini, Horst [2 ]
机构
[1] Univ Magdeburg, Fac Math, D-39106 Magdeburg, Germany
[2] Tech Univ Chemnitz, Fac Math, D-09107 Chemnitz, Germany
关键词
geometric inequality; pyramid; minimum width; reduced body; thickness;
D O I
10.1007/s10998-008-8117-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A convex body K in R-d is said to be reduced if the minimum width of each convex body properly contained in K is strictly smaller than the minimum width of K. We study the question of Lassak on the existence of reduced polytopes of dimension larger than two. We show that a pyramid of dimension larger than two with equal numbers of facets and vertices is not reduced. This generalizes the main result from [8].
引用
收藏
页码:117 / 120
页数:4
相关论文
共 10 条
[1]   On reduced polytopes and antipodality [J].
Averkov, Gennadiy ;
Martini, Horst .
ADVANCES IN GEOMETRY, 2008, 8 (04) :615-626
[2]  
Heil E., 1978, 453 FACHB MATH TH DA
[3]   Reduced bodies in Minkowski space [J].
Lassak, M ;
Martini, H .
ACTA MATHEMATICA HUNGARICA, 2005, 106 (1-2) :17-26
[4]   REDUCED CONVEX-BODIES IN THE PLANE [J].
LASSAK, M .
ISRAEL JOURNAL OF MATHEMATICS, 1990, 70 (03) :365-379
[5]  
Lassak M., 2006, BEITRAGE ALGEBRA GEO, V47, P559
[6]  
Martini H, 2004, PUBL MATH-DEBRECEN, V64, P101
[7]   Tetrahedra are not reduced [J].
Martini, H ;
Wenzel, W .
APPLIED MATHEMATICS LETTERS, 2002, 15 (07) :881-884
[8]  
Martini H., 1994, C MATH SOC J BOLYAI, V63, P269
[9]  
Schneider R., 1993, ENCY MATH ITS APPL, V44
[10]  
[No title captured]