Universality in the time correlations of the long-range 1d Ising model

被引:15
|
作者
Corberi, Federico [1 ,2 ,3 ]
Lippiello, Eugenio [4 ]
Politi, Paolo [5 ,6 ]
机构
[1] Univ Salerno, Dipartimento Fis ER Caianiello, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
[2] Univ Salerno, Ist Nazl Fis Nucl, Grp Collegato Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
[3] Univ Salerno, CNISM, Unita Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
[4] Univ Campania L Vanvitelli, Dipartimento Matemat & Fis, Viale Lincoln 5, I-81100 Caserta, Italy
[5] CNR, Ist Sistemi Complessi, Via Madonna Piano 10, I-50019 Sesto Fiorentino, Italy
[6] Ist Nazl Fis Nucl, Sez Firenze, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2019年
关键词
correlation functions; kinetic Ising models; numerical simulations; coarsening processes; PHASE-TRANSITION; GROWTH; DECAY;
D O I
10.1088/1742-5468/ab270a
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The equilibrium and nonequilibrium properties of ferromagnetic systems may be affected by the long-range nature of the coupling interaction. Here we study the phase separation process of a one-dimensional Ising model in the presence of a power-law decaying coupling, J(r) = 1/r(1+sigma) with sigma > 0, and we focus on the two-time autocorrelation function C(t, t(w)) = < s(i)(t)s(i)(t(w))>. We find that it obeys the scaling form C(t, t(w)) = f (L(t(w))/L(t)), where L(t) is the typical domain size at time t, and where f (x) can only be of two types. For sigma > 1, when domain walls diffuse freely, f (x) falls in the nearest-neighbour (nn) universality class. Conversely, for sigma <= 1, when domain walls dynamics is driven, f (x) displays a new universal behavior. In particular, the so-called Fisher-Huse exponent, which characterizes the asymptotic behavior of f (x) similar or equal to x(-lambda) for x >> 1, is lambda = 1 in the nn universality class (sigma > 1) and lambda = 1/2 for sigma <= 1.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Stability of multinode Dirac semimetals against strong long-range correlations
    Sekine, Akihiko
    Nomura, Kentaro
    PHYSICAL REVIEW B, 2014, 90 (07):
  • [42] Breaking universality in random sequential adsorption on a square lattice with long-range correlated defects
    Kundu, Sumanta
    Mandal, Dipanjan
    PHYSICAL REVIEW E, 2021, 103 (04)
  • [43] Kinetic Gaussian Model with Long-Range Interactions
    KONG Xiang-Mu~(1
    Communications in Theoretical Physics, 2004, 42 (12) : 913 - 922
  • [44] Relaxation timescales and decay of correlations in a long-range interacting quantum simulator
    van den Worm, Mauritz
    Sawyer, Brian C.
    Bollinger, John J.
    Kastner, Michael
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [45] Role of long-range correlations in high harmonic generation in disordered systems
    Zeng, Ai-Wu
    Bian, Xue-Bin
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2022, 55 (08)
  • [46] Kinetic Gaussian model with long-range interactions
    Kong, XM
    Yang, ZR
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 42 (06) : 913 - 922
  • [47] Studying long-range correlations in a liquid-vapor-phase transition
    Zebende, GF
    da Silva, MVS
    Rosa, ACP
    Alves, AS
    de Jesus, JCO
    Moret, MA
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 342 (1-2) : 322 - 328
  • [48] Long-range interactions in Sznajd consensus model
    Schulze, C
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 324 (3-4) : 717 - 722
  • [49] Short-range and long-range correlations in driven dense colloidal mixtures in narrow pores
    Slanina, Frantisek
    Kotrla, Miroslav
    Netocny, Karel
    PHYSICAL REVIEW E, 2022, 106 (01)
  • [50] Critical phenomena and Kibble-Zurek scaling in the long-range quantum Ising chain
    Jaschke, Daniel
    Maeda, Kenji
    Whalen, Joseph D.
    Wall, Michael L.
    Carr, Lincoln D.
    NEW JOURNAL OF PHYSICS, 2017, 19