Universality in the time correlations of the long-range 1d Ising model

被引:15
|
作者
Corberi, Federico [1 ,2 ,3 ]
Lippiello, Eugenio [4 ]
Politi, Paolo [5 ,6 ]
机构
[1] Univ Salerno, Dipartimento Fis ER Caianiello, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
[2] Univ Salerno, Ist Nazl Fis Nucl, Grp Collegato Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
[3] Univ Salerno, CNISM, Unita Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
[4] Univ Campania L Vanvitelli, Dipartimento Matemat & Fis, Viale Lincoln 5, I-81100 Caserta, Italy
[5] CNR, Ist Sistemi Complessi, Via Madonna Piano 10, I-50019 Sesto Fiorentino, Italy
[6] Ist Nazl Fis Nucl, Sez Firenze, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2019年
关键词
correlation functions; kinetic Ising models; numerical simulations; coarsening processes; PHASE-TRANSITION; GROWTH; DECAY;
D O I
10.1088/1742-5468/ab270a
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The equilibrium and nonequilibrium properties of ferromagnetic systems may be affected by the long-range nature of the coupling interaction. Here we study the phase separation process of a one-dimensional Ising model in the presence of a power-law decaying coupling, J(r) = 1/r(1+sigma) with sigma > 0, and we focus on the two-time autocorrelation function C(t, t(w)) = < s(i)(t)s(i)(t(w))>. We find that it obeys the scaling form C(t, t(w)) = f (L(t(w))/L(t)), where L(t) is the typical domain size at time t, and where f (x) can only be of two types. For sigma > 1, when domain walls diffuse freely, f (x) falls in the nearest-neighbour (nn) universality class. Conversely, for sigma <= 1, when domain walls dynamics is driven, f (x) displays a new universal behavior. In particular, the so-called Fisher-Huse exponent, which characterizes the asymptotic behavior of f (x) similar or equal to x(-lambda) for x >> 1, is lambda = 1 in the nn universality class (sigma > 1) and lambda = 1/2 for sigma <= 1.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Quasiperiodic Quantum Ising Transitions in 1D
    Crowley, P. J. D.
    Chandran, A.
    Laumann, C. R.
    PHYSICAL REVIEW LETTERS, 2018, 120 (17)
  • [32] Coexistence of coarsening and mean field relaxation in the long-range Ising chain
    Corberi, Federico
    Iannone, Alessandro
    Kumar, Manoj
    Lippiello, Eugenio
    Politi, Paolo
    SCIPOST PHYSICS, 2021, 10 (05):
  • [33] ONE-DIMENSIONAL LONG-RANGE FERROMAGNETIC ISING MODEL UNDER WEAK AND SPARSE EXTERNAL FIELD
    Kerimov, Azer
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (32): : 5899 - 5906
  • [34] Emergence of long-range correlations and thermal spectra in forced turbulence
    Hosking, D. N.
    Schekochihin, A. A.
    JOURNAL OF FLUID MECHANICS, 2023, 973
  • [35] Phase Separation for the Long Range One-dimensional Ising Model
    Cassandro, Marzio
    Merola, Immacolata
    Picco, Pierre
    JOURNAL OF STATISTICAL PHYSICS, 2017, 167 (02) : 351 - 382
  • [36] Finite-temperature critical behavior of long-range quantum Ising models
    Lazo, Eduardo Gonzalez
    Heyl, Markus
    Dalmonte, Marcello
    Angelone, Adriano
    SCIPOST PHYSICS, 2021, 11 (04):
  • [37] Thermodynamic properties of a spin-1 model with long-range interactions
    Hou, Ji-Xuan
    Yu, Xu-Chen
    MODERN PHYSICS LETTERS B, 2018, 32 (05):
  • [38] Chaotic properties of multipoint correlation functions of an ising model with long-range interactions on the Sierpinski-gasket lattice
    Jezewski, W
    JOURNAL OF STATISTICAL PHYSICS, 1996, 82 (3-4) : 1099 - 1112
  • [39] Entanglement Study of the 1D Ising Model with Added Dzyaloshinskii-Moriya Interaction
    Vahedi, J.
    Soltani, M. R.
    Mahdavifar, S.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2012, 25 (04) : 1159 - 1167
  • [40] Long-range topological correlations of real polycrystalline grains in two dimensions
    Wang, Hao
    Liu, Guoquan
    Chen, Ying
    Saengdeejing, Arkapol
    Miura, Hideo
    Suzuki, Ken
    MATERIALS CHARACTERIZATION, 2014, 97 : 178 - 182