Universality in the time correlations of the long-range 1d Ising model

被引:15
|
作者
Corberi, Federico [1 ,2 ,3 ]
Lippiello, Eugenio [4 ]
Politi, Paolo [5 ,6 ]
机构
[1] Univ Salerno, Dipartimento Fis ER Caianiello, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
[2] Univ Salerno, Ist Nazl Fis Nucl, Grp Collegato Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
[3] Univ Salerno, CNISM, Unita Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
[4] Univ Campania L Vanvitelli, Dipartimento Matemat & Fis, Viale Lincoln 5, I-81100 Caserta, Italy
[5] CNR, Ist Sistemi Complessi, Via Madonna Piano 10, I-50019 Sesto Fiorentino, Italy
[6] Ist Nazl Fis Nucl, Sez Firenze, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2019年
关键词
correlation functions; kinetic Ising models; numerical simulations; coarsening processes; PHASE-TRANSITION; GROWTH; DECAY;
D O I
10.1088/1742-5468/ab270a
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The equilibrium and nonequilibrium properties of ferromagnetic systems may be affected by the long-range nature of the coupling interaction. Here we study the phase separation process of a one-dimensional Ising model in the presence of a power-law decaying coupling, J(r) = 1/r(1+sigma) with sigma > 0, and we focus on the two-time autocorrelation function C(t, t(w)) = < s(i)(t)s(i)(t(w))>. We find that it obeys the scaling form C(t, t(w)) = f (L(t(w))/L(t)), where L(t) is the typical domain size at time t, and where f (x) can only be of two types. For sigma > 1, when domain walls diffuse freely, f (x) falls in the nearest-neighbour (nn) universality class. Conversely, for sigma <= 1, when domain walls dynamics is driven, f (x) displays a new universal behavior. In particular, the so-called Fisher-Huse exponent, which characterizes the asymptotic behavior of f (x) similar or equal to x(-lambda) for x >> 1, is lambda = 1 in the nn universality class (sigma > 1) and lambda = 1/2 for sigma <= 1.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Typical Gibbs Configurations for the 1d Random Field Ising Model with Long Range Interaction
    Cassandro, Marzio
    Orlandi, Enza
    Picco, Pierre
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 309 (01) : 229 - 253
  • [2] Universality Class of Ising Critical States with Long-Range Losses
    Marino, Jamir
    PHYSICAL REVIEW LETTERS, 2022, 129 (05)
  • [3] Decay of Correlations in 1D Lattice Systems of Continuous Spins and Long-Range Interaction
    Menz, Georg
    Nittka, Robin
    JOURNAL OF STATISTICAL PHYSICS, 2014, 156 (02) : 239 - 267
  • [4] Decay of Correlations in 1D Lattice Systems of Continuous Spins and Long-Range Interaction
    Georg Menz
    Robin Nittka
    Journal of Statistical Physics, 2014, 156 : 239 - 267
  • [5] Aging in the Long-Range Ising Model
    Christiansen, Henrik
    Majumder, Suman
    Henkel, Malte
    Janke, Wolfhard
    PHYSICAL REVIEW LETTERS, 2020, 125 (18)
  • [6] THE ISING MODEL WITH LONG-RANGE INTERACTIONS
    Biryukov, A. A.
    Degtyareva, Ya. V.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2015, 19 (03): : 415 - 424
  • [7] Phase ordering kinetics of the long-range Ising model
    Christiansen, Henrik
    Majumder, Suman
    Janke, Wolfhard
    PHYSICAL REVIEW E, 2019, 99 (01)
  • [8] Size Effect and Role of Short- and Long-Range Interactions on 1D Spin-Crossover Systems within the Framework of an Ising-Like Model
    Chiruta, Daniel
    Linares, Jorge
    Dimian, Mihai
    Garcia, Yann
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2013, (5-6) : 951 - 957
  • [9] Markov approximations of Gibbs measures for long-range interactions on 1D lattices
    Maldonado, Cesar
    Salgado-Garcia, Raul
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [10] Critical behavior of the Coulomb-glass model in the zero-disorder limit: Ising universality in a system with long-range interactions
    Moebius, A.
    Roessler, U. K.
    PHYSICAL REVIEW B, 2009, 79 (17)