Rings with countably many direct summands

被引:3
作者
Birkenmeier, GF [1 ]
Kim, JY
Park, JK
机构
[1] Univ SW Louisiana, Dept Math, Lafayette, LA 70504 USA
[2] Kyung Hee Univ, Dept Math, Suwon 449701, South Korea
[3] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
关键词
D O I
10.1080/00927870008826857
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:757 / 769
页数:13
相关论文
共 26 条
[1]  
[Anonymous], 1950, P INT C MATHEMATICIA
[2]  
BERBERIAN SK, 1972, GRUNDLEHREN MATH WIS, V195
[3]   When is the CS condition hereditary? [J].
Birkenmeier, GF ;
Kim, JY ;
Park, JK .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (08) :3875-3885
[4]   RINGS IN WHICH EVERY COMPLEMENT RIGHT IDEAL IS A DIRECT SUMMAND [J].
CHATTERS, AW ;
HAJARNAVIS, CR .
QUARTERLY JOURNAL OF MATHEMATICS, 1977, 28 (109) :61-80
[5]   ENDOMORPHISM-RINGS OF MODULES OVER NON-SINGULAR CS RINGS [J].
CHATTERS, AW ;
KHURI, SM .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1980, 21 (JUN) :434-444
[6]   TWISTED MATRIX UNITS SEMIGROUP ALGEBRAS [J].
CLARK, WE .
DUKE MATHEMATICAL JOURNAL, 1967, 34 (03) :417-&
[7]  
DUNG N. V., 1994, EXTENDING MODULES
[8]   HEREDITARY CS-MODULES [J].
DUNG, NV ;
SMITH, PF .
MATHEMATICA SCANDINAVICA, 1992, 71 (02) :173-180
[9]  
Goodearl K.R., 1991, von Neumann regular rings, V2nd
[10]  
Jacobson N., 1964, AM MATH SOC C PUBL, V37