Fractional Sturm-Liouville Equations: Self-Adjoint Extensions

被引:10
作者
Tokmagambetov, Niyaz [1 ,2 ]
Torebek, Berikbol T. [1 ,2 ]
机构
[1] Al Farabi Kazakh Natl Univ, 71 Al Farabi Ave, Alma Ata 050040, Kazakhstan
[2] Inst Math & Math Modeling, 125 Pushkin Str, Alma Ata 050010, Kazakhstan
关键词
Fractional kinetic equation; Caputo derivative; Riemann-Liouville derivative; Green's formula; Self-adjoint problem; Conservation law; The extension theory;
D O I
10.1007/s11785-018-0828-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this report we study a fractional analogue of Sturm-Liouville equation. A class of self-adjoint fractional Sturm-Liouville operators is described. We give a biological interpretation of the fractional order equation and nonlocal boundary conditions that arise in describing the systems separated by a membrane. In particular, the connection with so called fractional kinetic equations is observed. Also, some spectral properties of the fractional kinetic equations are derived. An application to the anomalous diffusion of particles in a heterogeneous system of the fractional Sturm-Liouville equations is discussed.
引用
收藏
页码:2259 / 2267
页数:9
相关论文
共 12 条
[1]  
Ashrafuzzaman M., 2013, Membrane Biophysics
[2]   Schatten classes, nuclearity and nonharmonic analysis on compact manifolds with boundary [J].
Delgado, Julio ;
Ruzhansky, Michael ;
Tokmagambetov, Niyaz .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 107 (06) :758-783
[3]   Schatten classes on compact manifolds: Kernel conditions [J].
Delgado, Julio ;
Ruzhansky, Michael .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (03) :772-798
[4]  
Hsieh H, 1996, Inorganic membranes for separation and reaction
[5]  
Kilbas AA., 2006, THEORY APPL FRACTION, DOI DOI 10.1016/S0304-0208(06)80001-0
[6]   Fractional Sturm-Liouville problem [J].
Klimek, M. ;
Agrawal, O. P. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (05) :795-812
[7]   Anomalous diffusion and transport in heterogeneous systems separated by a membrane [J].
Lenzi, E. K. ;
Ribeiro, H. V. ;
Tateishi, A. A. ;
Zola, R. S. ;
Evangelista, L. R. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2195)
[8]  
Nakhushev A.M., 2003, Fractional Calculus and Its Applications
[9]   Nonharmonic Analysis of Boundary Value Problems Without WZ Condition [J].
Ruzhansky, M. ;
Tokmagambetov, N. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2017, 12 (01) :115-140
[10]   Nonharmonic Analysis of Boundary Value Problems [J].
Ruzhansky, Michael ;
Tokmagambetov, Niyaz .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (12) :3548-3615