Existence and learning of oscillations in recurrent neural networks

被引:105
作者
Townley, S
Ilchmann, A
Weiss, MG
Mcclements, W
Ruiz, AC
Owens, DH
Prätzel-Wolters, D
机构
[1] Univ Exeter, Sch Math Sci, Exeter EX4 4QE, Devon, England
[2] Univ Kaiserslautern, Graduiertenkolleg Technol Math, D-67663 Kaiserslautern, Germany
[3] Univ Exeter, Ctr Syst & Control Engn, Exeter EX4 4QF, Devon, England
[4] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2000年 / 11卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
learning systems; monotone dynamical systems; nonlinear dynamics; recurent neural networks;
D O I
10.1109/72.822523
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we study a particular class of n-node recurrent neural networks (RNN's), In the 3-node case we use monotone dynamical systems theory to show, for a well-defined set of parameters, that, generically, every orbit of the RNN is asymptotic to a periodic orbit. Then we investigate whether RNN's of this class can adapt their internal parameters so as to "learn" and then replicate autonomously tin feedback) certain external periodic signals. Our learning algorithm is similar to identification algorithms in adaptive control theory. The main feature of the algorithm is that global exponential convergence of parameters is guaranteed. We also obtain partial convergence results in the n-node case.
引用
收藏
页码:205 / 214
页数:10
相关论文
共 29 条
[1]  
Asada H., 1986, ROBOT ANAL CONTROL
[2]  
Atiya A., 1989, International Journal of Neural Systems, V1, P103, DOI 10.1142/S0129065789000025
[3]   CONTROL OF CHAOS IN DELAY-DIFFERENTIAL EQUATIONS, IN A NETWORK OF OSCILLATORS AND IN MODEL CORTEX [J].
BABLOYANTZ, A ;
LOURENCO, C ;
SEPULCHRE, JA .
PHYSICA D, 1995, 86 (1-2) :274-283
[4]  
BLACH R, 1992, 9203 U EX CTR SYST C
[5]   NECESSARY AND SUFFICIENT CONDITIONS FOR PARAMETER CONVERGENCE IN ADAPTIVE-CONTROL [J].
BOYD, S ;
SASTRY, SS .
AUTOMATICA, 1986, 22 (06) :629-639
[6]   ADAPTIVE NEURAL OSCILLATOR USING CONTINUOUS-TIME BACK-PROPAGATION LEARNING [J].
DOYA, K ;
YOSHIZAWA, S .
NEURAL NETWORKS, 1989, 2 (05) :375-385
[7]   CONTROL OF THE TRANSITION TO CHAOS IN NEURAL NETWORKS WITH RANDOM CONNECTIVITY [J].
Doyon, B. ;
Cessac, B. ;
Quoy, M. ;
Samuelides, M. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (02) :279-291
[8]   EXISTENCE OF PERIODIC-SOLUTIONS FOR NEGATIVE FEEDBACK CELLULAR CONTROL-SYSTEMS [J].
HASTINGS, S ;
TYSON, J ;
WEBSTER, D .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 25 (01) :39-64
[9]   Systems of differential equations which are competitive or cooperative: III. Competing species [J].
Hirsch, Morris W. .
NONLINEARITY, 1988, 1 (01) :51-71
[10]  
Horn R. A., 1986, Matrix analysis