Deep Autoencoder Based CSI Feedback With Feedback Errors and Feedback Delay in FDD Massive MIMO Systems

被引:60
|
作者
Jang, Youngrok [1 ]
Kong, Gyuyeol [1 ]
Jung, Minchae [1 ]
Choi, Sooyong [1 ]
Kim, Il-Min [2 ]
机构
[1] Yonsei Univ, Sch Elect & Elect Engn, Seoul 03722, South Korea
[2] Queens Univ, Dept Elect & Comp Engn, Kingston, ON K7L 3N6, Canada
基金
加拿大自然科学与工程研究理事会; 新加坡国家研究基金会;
关键词
Autoencoder; CSI feedback; FDD massive MIMO; feedback delay; feedback errors; CAPACITY; CHANNELS;
D O I
10.1109/LWC.2019.2895039
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter, we study the channel state information (CSI) feedback based on the deep autoencoder (AE) considering the feedback errors and feedback delay in the frequency division duplex massive multiple-input multiple-output system. We construct the deep AE by modeling the CSI feedback process, which involves feedback transmission errors and delays. The deep AE is trained by setting the delayed version of the downlink channel as the desired output. The proposed scheme reduces the impact of the feedback errors and feedback delay. Simulation results demonstrate that the proposed scheme achieves better performance than other comparable schemes.
引用
收藏
页码:833 / 836
页数:4
相关论文
共 50 条
  • [21] HRNet: Deep Massive MIMO CSI Feedback with Hypernetworks
    Cen, Xiangyu
    Lam, Chan-Tong
    Ng, Benjamin
    Im, Sio-Kei
    2024 9TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING, ICSIP, 2024, : 500 - 504
  • [22] DiscoCSINet: Dissymmetric Convolution Neural Network for CSI Feedback in FDD Massive MIMO System
    Yang, Yang
    Xin, Yutong
    Lu, Zejian
    Lee, Yong
    Zhou, Kun
    Lee, Jemin
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 1489 - 1494
  • [23] MRFNet: A Deep Learning-Based CSI Feedback Approach of Massive MIMO Systems
    Hu, Zhengyang
    Guo, Jianhua
    Liu, Guanzhang
    Zheng, Hanying
    Xue, Jiang
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (10) : 3310 - 3314
  • [24] Optimal Pilot Design With CSI Feedback In Massive MIMO Systems
    Li, Dan
    Zhou, Yuan
    Yang, Ang
    Guo, Shaozhen
    2014 9TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND NETWORKING IN CHINA (CHINACOM), 2014, : 448 - 452
  • [25] Deep Learning-Based Implicit CSI Feedback in Massive MIMO
    Chen, Muhan
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    Yang, Ang
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (02) : 935 - 950
  • [26] DL CSI Acquisition and Feedback in FDD Massive MIMO via Path Aligning
    Luo, Xiliang
    Zhang, Xiaoyu
    Cai, Penghao
    Shen, Cong
    Hu, Die
    Qian, Hua
    2017 NINTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2017), 2017, : 349 - 354
  • [27] Improve Downlink Rates of FDD Massive MIMO Systems by Exploiting CSI Feedback Waiting Phase
    Tao, Zhihao
    Wangt, Tianyu
    Wang, Shaowei
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [28] ACCsiNet: Asymmetric Convolution-Based Autoencoder Framework for Massive MIMO CSI Feedback
    Cao, Biao
    Yang, Yang
    Ran, Peng
    He, Dazhong
    He, Gang
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (12) : 3873 - 3877
  • [29] Two-Stage Adaptive and Compressed CSI Feedback for FDD Massive MIMO
    Huang, Guan
    Liu, An
    Zhao, Min-Jian
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (09) : 9602 - 9606
  • [30] TransNet: Full Attention Network for CSI Feedback in FDD Massive MIMO System
    Cui, Yaodong
    Guo, Aihuang
    Song, Chunlin
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (05) : 903 - 907