Deep Autoencoder Based CSI Feedback With Feedback Errors and Feedback Delay in FDD Massive MIMO Systems

被引:60
|
作者
Jang, Youngrok [1 ]
Kong, Gyuyeol [1 ]
Jung, Minchae [1 ]
Choi, Sooyong [1 ]
Kim, Il-Min [2 ]
机构
[1] Yonsei Univ, Sch Elect & Elect Engn, Seoul 03722, South Korea
[2] Queens Univ, Dept Elect & Comp Engn, Kingston, ON K7L 3N6, Canada
基金
加拿大自然科学与工程研究理事会; 新加坡国家研究基金会;
关键词
Autoencoder; CSI feedback; FDD massive MIMO; feedback delay; feedback errors; CAPACITY; CHANNELS;
D O I
10.1109/LWC.2019.2895039
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter, we study the channel state information (CSI) feedback based on the deep autoencoder (AE) considering the feedback errors and feedback delay in the frequency division duplex massive multiple-input multiple-output system. We construct the deep AE by modeling the CSI feedback process, which involves feedback transmission errors and delays. The deep AE is trained by setting the delayed version of the downlink channel as the desired output. The proposed scheme reduces the impact of the feedback errors and feedback delay. Simulation results demonstrate that the proposed scheme achieves better performance than other comparable schemes.
引用
收藏
页码:833 / 836
页数:4
相关论文
共 50 条
  • [1] Deep CSI Feedback for FDD MIMO Systems
    He, Zibo
    Zhao, Long
    Luo, Xiangchen
    Cheng, Binyao
    COMMUNICATIONS AND NETWORKING (CHINACOM 2021), 2022, : 366 - 376
  • [2] A Novel Compression CSI Feedback based on Deep Learning for FDD Massive MIMO Systems
    Wang, Yuting
    Zhang, Yibin
    Sun, Jinlong
    Gui, Guan
    Ohtsuki, Tomoaki
    Adachi, Fumiyuki
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2021,
  • [3] Deep Learning and Compressive Sensing-Based CSI Feedback in FDD Massive MIMO Systems
    Liang, Peizhe
    Fan, Jiancun
    Shen, Wenhan
    Qin, Zhijin
    Li, Geoffrey Ye
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (08) : 9217 - 9222
  • [4] Deep Learning-Based Denoise Network for CSI Feedback in FDD Massive MIMO Systems
    Ye, Hongyuan
    Gao, Feifei
    Qian, Jing
    Wang, Hao
    Li, Geoffrey Ye
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (08) : 1742 - 1746
  • [5] Joint Sparse Autoencoder Based Massive MIMO CSI Feedback
    Shan, Hangyang
    Chen, Xiaohui
    Yin, Huarui
    Chen, Li
    Wei, Guo
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (04) : 1150 - 1154
  • [6] Adaptive DNN-based CSI Feedback with Quantization for FDD Massive MIMO Systems
    Gao, Junjie
    Bouazizi, Mondher
    Ohtsuki, Tomoaki
    Gui, Guan
    2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), 2022,
  • [7] Integrated Deep Implicit CSI Feedback and Beamforming Design for FDD mmWave Massive MIMO Systems
    Xue, Qiulin
    Dong, Chao
    Li, Xiangjun
    Yi, Jianzhong
    Niu, Kai
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (01) : 119 - 123
  • [8] Deep Autoencoder-based Massive MIMO CSI Feedback with Quantization and Entropy Coding
    Ravula, Sriram
    Jain, Swayambhoo
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [9] Deep Learning-Based Joint CSI Feedback and Hybrid Precoding in FDD mmWave Massive MIMO Systems
    Sun, Qiang
    Zhao, Huan
    Wang, Jue
    Chen, Wei
    ENTROPY, 2022, 24 (04)
  • [10] A Manifold Learning-Based CSI Feedback Framework for FDD Massive MIMO
    Cao, Yandi
    Yin, Haifan
    Qin, Ziao
    Li, Weidong
    Wu, Weimin
    Debbah, Merouane
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2025, 73 (03) : 1833 - 1846