Single-Particle Dichroism Using Orbital Angular Momentum in a Microwave Plasmonic Resonator

被引:30
|
作者
Zhang, Xuanru [1 ]
Cui, Tie Jun [1 ]
机构
[1] Southeast Univ, State Key Lab Millimeter Waves, Nanjing 210096, Peoples R China
来源
ACS PHOTONICS | 2020年 / 7卷 / 12期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
chirality; microwave vortex; orbital angular momentum (OAM); single-molecule dichroism; CIRCULAR-DICHROISM; CHIROPTICAL RESPONSE; SURFACE; METAMATERIAL; BEHAVIOR; LIGHT;
D O I
10.1021/acsphotonics.0c01139
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Dichroism measurement is mostly restricted to extensive numbers of molecules due to weak response from a single deep-subwavelength particle, and hence single-molecule dichroism is of essential importance for the in-depth study of enantiomers. This paper reports the dichroism capability of a single chiral particle within the diameter of 1/150 wavelengths and smaller, using sharp resonance dips of confined orbital angular momentum (OAM) modes, which are ultrasensitive to disturbance from chiral particles. The OAM modes are realized in a microwave plasmonic resonator via chiral symmetry breaking in the structure. Full-wave simulations and OAM density analysis of the resonant modes confirm the single-particle dichroism principle. Experimental results agree well with the simulations. The principle is demonstrated in the microwave frequency for convenient manipulations and intensive investigations, while it envisions ground-breaking applications of the confined OAM modes in on-chip single-molecule dichroism in the optical frequency range.
引用
收藏
页码:5291 / 5297
页数:7
相关论文
共 50 条
  • [21] Orbital Angular Momentum-Controlled Tunable Directional Plasmonic Coupler
    Liu, Ting
    Wang, Shouyu
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2016, 28 (01) : 91 - 94
  • [22] Single-Particle Photothermal Circular Dichroism and Photothermal Magnetic Circular Dichroism Microscopy
    Adhikari, Subhasis
    Efremova, Maria V.
    Spaeth, Patrick
    Koopmans, Bert
    Lavrijsen, Reinoud
    Orrit, Michel
    NANO LETTERS, 2024, 24 (17) : 5093 - 5103
  • [23] Microwave Orbital Angular Momentum Mode Generation and Multiplexing Using a Waveguide Butler Matrix
    Lee, Wangjoo
    Hong, Ju Yeon
    Kang, Min Soo
    Kim, Bong Su
    Kim, Kwang Seon
    Byun, Woo Jin
    Song, Myung Sun
    Cho, Yong Heui
    ETRI JOURNAL, 2017, 39 (03) : 336 - 344
  • [24] Photonic Orbital Angular Momentum Dichroism on Three-Dimensional Chiral Oligomers
    Cao, Yang
    Liu, Shunli
    Tao, Yuan
    Wang, Xinghao
    Ni, Jincheng
    Wang, Chaowei
    Zheng, Xinyuan
    Li, Jiawen
    Hu, Yanlei
    Wu, Dong
    Chu, Jiaru
    ACS PHOTONICS, 2023, 10 (06) : 1873 - 1881
  • [25] Optical communication in maritime environments using orbital angular momentum
    Judd, K. Peter
    Mahan, Patrick
    Makrakis, Nicholas
    Lindle, J. R.
    Watnik, Abbie T.
    Freeman, Wade
    Sagusti, Robert
    Neary, Patrick
    Payne, Charles
    Font, Carlos
    OCEAN SENSING AND MONITORING XII, 2020, 11420
  • [26] Scattering of a beam with orbital angular momentum by a single sphere
    Lue Hong
    Ke Xi-Zheng
    ACTA PHYSICA SINICA, 2009, 58 (12) : 8302 - 8308
  • [27] Fourier Transform of the Orbital Angular Momentum of a Single Photon
    Kysela, Jaroslav
    Gao, Xiaoqin
    Dakic, Borivoje
    PHYSICAL REVIEW APPLIED, 2020, 14 (03)
  • [28] Ghost Imaging Using Orbital Angular Momentum
    Zhao Sheng-Mei
    Ding Jian
    Dong Xiao-Liang
    Zheng Bao-Yu
    CHINESE PHYSICS LETTERS, 2011, 28 (12)
  • [29] Optical spin-to-orbital plasmonic angular momentum conversion in subwavelength apertures
    Brandao, P. A.
    Cavalcanti, S. B.
    OPTICS LETTERS, 2013, 38 (06) : 920 - 922
  • [30] Optical Orbital Angular Momentum Read-Out Using a Self-Assembled Plasmonic Nanowire
    Sharma, Deepak K.
    Kumar, Vijay
    Vasista, Adarsh B.
    Paul, Diptabrata
    Chaubey, Shailendra K.
    Kumar, G. V. Pavan
    ACS PHOTONICS, 2019, 6 (01) : 148 - 153