Single-Particle Dichroism Using Orbital Angular Momentum in a Microwave Plasmonic Resonator

被引:30
|
作者
Zhang, Xuanru [1 ]
Cui, Tie Jun [1 ]
机构
[1] Southeast Univ, State Key Lab Millimeter Waves, Nanjing 210096, Peoples R China
来源
ACS PHOTONICS | 2020年 / 7卷 / 12期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
chirality; microwave vortex; orbital angular momentum (OAM); single-molecule dichroism; CIRCULAR-DICHROISM; CHIROPTICAL RESPONSE; SURFACE; METAMATERIAL; BEHAVIOR; LIGHT;
D O I
10.1021/acsphotonics.0c01139
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Dichroism measurement is mostly restricted to extensive numbers of molecules due to weak response from a single deep-subwavelength particle, and hence single-molecule dichroism is of essential importance for the in-depth study of enantiomers. This paper reports the dichroism capability of a single chiral particle within the diameter of 1/150 wavelengths and smaller, using sharp resonance dips of confined orbital angular momentum (OAM) modes, which are ultrasensitive to disturbance from chiral particles. The OAM modes are realized in a microwave plasmonic resonator via chiral symmetry breaking in the structure. Full-wave simulations and OAM density analysis of the resonant modes confirm the single-particle dichroism principle. Experimental results agree well with the simulations. The principle is demonstrated in the microwave frequency for convenient manipulations and intensive investigations, while it envisions ground-breaking applications of the confined OAM modes in on-chip single-molecule dichroism in the optical frequency range.
引用
收藏
页码:5291 / 5297
页数:7
相关论文
共 50 条
  • [1] Orbital angular momentum dichroism in nanoantennas
    Kerber, R. M.
    Fitzgerald, J. M.
    Oh, S. S.
    Reiter, D. E.
    Hess, O.
    COMMUNICATIONS PHYSICS, 2018, 1
  • [2] Generation of microwave orbital angular momentum states using hemispherical dielectric resonator antenna
    Ren, Jian
    Leung, Kwok Wa
    APPLIED PHYSICS LETTERS, 2018, 112 (13)
  • [3] Plasmonic Vortices: A Promising Tool Utilizing Plasmonic Orbital Angular Momentum
    Gao, Zhi
    Voronine, Dmitri V.
    Sokolov, Alexei V.
    PHOTONICS, 2025, 12 (02)
  • [4] Visualizing orbital angular momentum of plasmonic vortices
    Shen, Z.
    Hu, Z. J.
    Yuan, G. H.
    Min, C. J.
    Fang, H.
    Yuan, X-C.
    OPTICS LETTERS, 2012, 37 (22) : 4627 - 4629
  • [5] Giant Helical Dichroism of Single Chiral Nanostructures with Photonic Orbital Angular Momentum
    Ni, Jincheng
    Liu, Shunli
    Hu, Guangwei
    Hu, Yanlei
    Lao, Zhaoxin
    Li, Jiawen
    Zhang, Qing
    Wu, Dong
    Dong, Shaohua
    Chu, Jiaru
    Qiu, Cheng-Wei
    ACS NANO, 2021, 15 (02) : 2893 - 2900
  • [6] Microwave imaging of spinning object using orbital angular momentum
    Liu, Kang
    Li, Xiang
    Gao, Yue
    Wang, Hongqiang
    Cheng, Yongqiang
    JOURNAL OF APPLIED PHYSICS, 2017, 122 (12)
  • [7] One-dimensional photonic crystal enhancing spin-to-orbital angular momentum conversion for single-particle tracking
    Huang, Mingchuan
    Chen, Qiankun
    Liu, Yang
    Zhang, Chi
    Zhang, Rongjin
    Yuan, Junhua
    Zhang, Douguo
    LIGHT-SCIENCE & APPLICATIONS, 2024, 13 (01)
  • [8] Orbital angular momentum multiplication in plasmonic vortex cavities
    Spektor, Grisha
    Prinz, Eva
    Hartelt, Michael
    Mahro, Anna-Katharina
    Aeschlimann, Martin
    Orenstein, Meir
    SCIENCE ADVANCES, 2021, 7 (33)
  • [9] Measurement of Orbital Angular Momentum by Self-Interference Using a Plasmonic Metasurface
    Chen, Xiaolin
    Zhou, Hailong
    Liu, Mian
    Dong, Jianji
    IEEE PHOTONICS JOURNAL, 2016, 8 (01):
  • [10] Mode Division Multiplexing Communication Using Microwave Orbital Angular Momentum: An Experimental Study
    Zhang, Weite
    Zheng, Shilie
    Hui, Xiaonan
    Dong, Ruofan
    Jin, Xiaofeng
    Chi, Hao
    Zhang, Xianmin
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2017, 16 (02) : 1308 - 1318