Self-interactions as predicted by the Dirac-Maxwell equations

被引:3
|
作者
Lv, Q. Z. [1 ,2 ,3 ]
Norris, S. [2 ,3 ]
Su, Q. [2 ,3 ]
Grobe, R. [2 ,3 ]
机构
[1] China Univ Min & Technol, State Key Lab GeoMech & Deep Underground Engn, Beijing 100083, Peoples R China
[2] Illinois State Univ, Intense Laser Phys Theory Unit, Normal, IL 61790 USA
[3] Illinois State Univ, Dept Phys, Normal, IL 61790 USA
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 03期
关键词
16;
D O I
10.1103/PhysRevA.90.034101
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We solve the Maxwell-Dirac equations to study the dynamics of a spatially localized charged particle in one spatial dimension. While the coupling of the Maxwell equations to the Dirac equation predicts correctly the attractive or repulsive interaction between different particles, it also reveals an unphysical interaction of a single electron or positron with itself leading to an enhanced spatial spreading of the wave packet. Using a comparison with a relativistic ensemble of mutually interacting classical quasiparticles, we suggest that this quantum mechanical self-repulsion can be understood in terms of relativistic classical mechanics. We show that due to the simple form of the Coulomb law in one spatial dimension it is possible to find analytical expressions of the time-dependent spatial width for the interacting classical ensemble. A better understanding of the dynamical impact of this unavoidable self-repulsion effect is relevant for recent studies of the field-induced pair creation process from the vacuum.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Removal of self-interactions in the Dirac-Maxwell equations in one spatial dimension
    Norris, S.
    Unger, J.
    Lv, Q. Z.
    Su, Q.
    Grobe, R.
    PHYSICAL REVIEW A, 2016, 93 (03)
  • [2] THE RENORMALIZATION OF DIRAC-MAXWELL EQUATIONS
    SEN, P
    NUOVO CIMENTO, 1959, 13 (06): : 1122 - 1132
  • [3] Localized solutions of the Dirac-Maxwell equations
    Radford, CJ
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (09) : 4418 - 4433
  • [5] The Dirac-Maxwell equations with cylindrical symmetry
    Booth, HS
    Radford, CJ
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (03) : 1257 - 1268
  • [6] Model Dirac-Maxwell equations with pseudounitary symmetry
    Marchuk, N. G.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2008, 157 (03) : 1723 - 1732
  • [7] Model Dirac-Maxwell equations with pseudounitary symmetry
    N. G. Marchuk
    Theoretical and Mathematical Physics, 2008, 157
  • [8] Dirac-Maxwell solitons
    Bohun, C. Sean
    Cooperstock, F.I.
    Physical Review A - Atomic, Molecular, and Optical Physics, 1999, 60 (06): : 4291 - 4300
  • [9] Dirac-Maxwell solitons
    Bohun, CS
    Cooperstock, FI
    PHYSICAL REVIEW A, 1999, 60 (06): : 4291 - 4300
  • [10] Reconstruction of symmetric Dirac-Maxwell equations using nonassociative algebra
    Kalauni, Pushpa
    Barata, J. C. A.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2015, 12 (03)