Using Popular Object Detection Methods for Real Time Forest Fire Detection

被引:79
作者
Wu, Shixiao [1 ]
Zhang, Libing [2 ]
机构
[1] Wuhan Business Univ, Coll Informat Engn, Wuhan, Hubei, Peoples R China
[2] Wuhan Business Univ, Dept Org, Wuhan, Hubei, Peoples R China
来源
2018 11TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 1 | 2018年
关键词
component; real time forest fire detection; object detection; forest safety; improved YOLO;
D O I
10.1109/ISCID.2018.00070
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we focus on three problems that surrounded forest fire detection, real-time, early fire detection, and false detection. For the first time, we use classical objective detection methods to detect forest fire: Faster R-CNN, YOLO (tiny-yolo-voc, tiny-yolo-vocl, yolo-voc.2.0, and yolov3), and SSD, among them SSD has better real-time property, higher detection accuracy and early fire detection ability. We make the fire and smoke benchmark, utilize the new added smoke class and fire area changes to minimize the wrong detection. Meanwhile, we adjust YOLO's tiny-yolo-voc structure and propose a new structure tiny-yolo-vocl, the experiments proves that this improves the fire detection accuracy rate. This paper is very practical for forest safety and real time forest monitor.
引用
收藏
页码:280 / 284
页数:5
相关论文
共 11 条
[1]  
[Anonymous], 2016, MANAGEMENT ED INFORM
[2]  
Joseph RK, 2016, CRIT POL ECON S ASIA, P1
[3]  
Kaur A., 2014, INT J COMPUTER SCI I
[4]   SSD: Single Shot MultiBox Detector [J].
Liu, Wei ;
Anguelov, Dragomir ;
Erhan, Dumitru ;
Szegedy, Christian ;
Reed, Scott ;
Fu, Cheng-Yang ;
Berg, Alexander C. .
COMPUTER VISION - ECCV 2016, PT I, 2016, 9905 :21-37
[5]  
Mittal Anupam, 2016, INT RES J ENG TECHNO
[6]  
Patel P., 2012, INT J COMPUTER APPL, V58, P45
[7]  
Prasad KSN, 2008, INT J COMPUT SCI NET, V8, P49
[8]  
Redmon J, 2018, Arxiv, DOI arXiv:1804.02767
[9]   Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks [J].
Ren, Shaoqing ;
He, Kaiming ;
Girshick, Ross ;
Sun, Jian .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (06) :1137-1149
[10]  
Sam G., 2016, INT J COMPUTER SCI N