SYMMETRY OF SOLUTIONS TO SEMILINEAR EQUATIONS INVOLVING THE FRACTIONAL LAPLACIAN

被引:1
作者
Zhang, Lizhi [1 ]
机构
[1] Henan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Peoples R China
关键词
Monotonicity; symmetry; nonexistence of positive solutions; the fractional Laplacian; Dirichlet problem; semi-linear elliptic equation; a direct method of moving planes; maximum principle for anti-symmetric functions; narrow region principle; decay at infinity; LIOUVILLE TYPE THEOREMS; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; RADIAL SYMMETRY; UNIQUENESS; MONOTONICITY; REGULARITY; SYSTEM;
D O I
10.3934/cpaa.2015.14.2393
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 0 < alpha < 2 be any real number. Let Omega subset of R-n be a bounded or an unbounded domain which is convex and symmetric in x(1) direction. We investigate the following Dirichlet problem involving the fractional Laplacian: { (-Delta)(alpha/2)u(x) = f(x,u), x epsilon Omega, u(x) 0, x is not an element of Omega, (1) Applying a direct method of moving planes for the fractional Laplacian, with the help of several maximum principles for anti-symmetric functions, we prove the monotonicity and symmetry of positive solutions in x(1) direction as well as nonexistence of positive solutions under various conditions on f and on the solutions u. We also extend the results to some more complicated cases.
引用
收藏
页码:2393 / 2409
页数:17
相关论文
共 39 条
[1]   ELLIPTIC-EQUATIONS WITH NEARLY CRITICAL GROWTH [J].
ATKINSON, FV ;
PELETIER, LA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 70 (03) :349-365
[2]  
Berestycki H, 1997, COMMUN PUR APPL MATH, V50, P1089, DOI 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO
[3]  
2-6
[4]   Inequalities for second-order elliptic equations with applications to unbounded domains .1. [J].
Berestycki, H ;
Caffarelli, LA ;
Nirenberg, L .
DUKE MATHEMATICAL JOURNAL, 1996, 81 (02) :467-494
[5]  
BERESTYCKI H, 1993, BOUNDARY VALUE PROBL, P27
[6]  
Berestycki H., 1988, J. Geom. Phys., V5, P237
[7]  
Berestycki H., 1991, Bol. Soc. Bras. Mat, V22, P1, DOI DOI 10.1007/BF01244896
[8]   A concave-convex elliptic problem involving the fractional Laplacian [J].
Braendle, C. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) :39-71
[9]  
Brezis H., 1989, Progr. Nonlinear Differential Equations Appl., V1, P149
[10]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260