Clebsch-type coordinates for nonlinear gyrokinetics in generic toroidal configurations

被引:41
作者
Xanthopoulos, P.
Jenko, F.
机构
[1] Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany
[2] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
关键词
NUMERICAL COMPUTATION; ERGODIC DIVERTOR; PLASMA; TURBULENCE; GRADIENT; EQUATIONS; TOKAMAK;
D O I
10.1063/1.2338818
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The nonlinear gyrokinetic equations are frequently used as a basis for simulations of small-scale turbulence in magnetized toroidal plasmas. In this context, field-aligned coordinates are usually employed in order to minimize the number of necessary grid points. The present work proposes a system of Clebsch-type coordinates which does not depend on the existence of flux surfaces. The construction and use of these coordinates is explained, and the corresponding formulation of the nonlinear gyrokinetic equations is accomplished. This setup paves the way toward the investigation of nonaxisymmetric toroidal geometries, also in the region of magnetic islands as well as inside the ergodic layer where flux surfaces cease to exist. For testing purposes, in the axisymmetric, large aspect ratio case, the well-known s-alpha expressions are recovered for closed flux surfaces. Moreover, geometric data for a specific stellarator configuration are computed and discussed. (c) 2006 American Institute of Physics.
引用
收藏
页数:10
相关论文
共 19 条
[1]   FIELD-ALIGNED COORDINATES FOR NONLINEAR SIMULATIONS OF TOKAMAK TURBULENCE [J].
BEER, MA ;
COWLEY, SC ;
HAMMETT, GW .
PHYSICS OF PLASMAS, 1995, 2 (07) :2687-2700
[2]   NONLINEAR GYROKINETIC MAXWELL-VLASOV EQUATIONS USING MAGNETIC COORDINATES [J].
BRIZARD, A .
JOURNAL OF PLASMA PHYSICS, 1989, 41 :541-559
[3]   SHEAR, PERIODICITY, AND PLASMA BALLOONING MODES [J].
CONNOR, JW ;
HASTIE, RJ ;
TAYLOR, JB .
PHYSICAL REVIEW LETTERS, 1978, 40 (06) :396-399
[4]   CONSIDERATIONS OF ION-TEMPERATURE-GRADIENT-DRIVEN TURBULENCE [J].
COWLEY, SC ;
KULSRUD, RM ;
SUDAN, R .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1991, 3 (10) :2767-2782
[5]  
D'haeseleer W.D., 2011, Flux Coordinates and Magnetic Field Structure
[6]   Gyrokinetic simulation of collisionless trapped-electron mode turbulence [J].
Dannert, T ;
Jenko, F .
PHYSICS OF PLASMAS, 2005, 12 (07) :1-8
[7]   Edge turbulence during ergodic divertor operation in Tore Supra [J].
Devynck, P ;
Garbet, X ;
Ghendrih, P ;
Gunn, J ;
Honore, C ;
Pégourié, B ;
Antar, G ;
Azeroual, A ;
Beyer, P ;
Boucher, C ;
Budaev, V ;
Capes, H ;
Gervais, F ;
Hennequin, P ;
Loarer, T ;
Quémeneur, A ;
Truc, A ;
Vallet, JC .
NUCLEAR FUSION, 2002, 42 (06) :697-707
[8]   NON-LINEAR GYROKINETIC EQUATIONS FOR LOW-FREQUENCY ELECTROMAGNETIC-WAVES IN GENERAL PLASMA EQUILIBRIA [J].
FRIEMAN, EA ;
CHEN, L .
PHYSICS OF FLUIDS, 1982, 25 (03) :502-508
[9]   NONLINEAR GYROKINETIC THEORY FOR FINITE-BETA PLASMAS [J].
HAHM, TS ;
LEE, WW ;
BRIZARD, A .
PHYSICS OF FLUIDS, 1988, 31 (07) :1940-1948
[10]   Electron temperature gradient driven turbulence [J].
Jenko, F ;
Dorland, W ;
Kotschenreuther, M ;
Rogers, BN .
PHYSICS OF PLASMAS, 2000, 7 (05) :1904-1910