The Ridgelet transform of distributions

被引:21
作者
Kostadinova, S. [1 ]
Pilipovic, S. [2 ]
Saneva, K. [1 ]
Vindas, J. [3 ]
机构
[1] Ss Cyril & Methodius Univ, Fac Elect Engn & Informat Technol, Skopje 1000, Macedonia
[2] Univ Novi Sad, Dept Math & Informat, Novi Sad 21000, Serbia
[3] Univ Ghent, Dept Math, B-9000 Ghent, Belgium
关键词
Ridgelet transform; Radon transform; wavelet transform; distributions; RADON-TRANSFORM; EUCLIDEAN-SPACE;
D O I
10.1080/10652469.2013.853057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define and study the Ridgelet transform of (Lizorkin) distributions. We establish connections with the Radon and wavelet transforms.
引用
收藏
页码:344 / 358
页数:15
相关论文
共 23 条
[1]  
[Anonymous], 1998, THESIS STANFORD U ST
[2]  
[Anonymous], WAVELETS ANAL TOOL
[3]  
[Anonymous], 1998, Wavelets, vibrations and scalings
[4]   Harmonic analysis of neural networks [J].
Candès, EJ .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1999, 6 (02) :197-218
[5]   Ridgelets:: a key to higher-dimensional intermittency? [J].
Candès, EJ ;
Donoho, DL .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 357 (1760) :2495-2509
[6]   Asymptotically homogeneous generalized functions and boundary properties of functions holomorphic in tubular cones [J].
Drozhzhinov, Yu. N. ;
Zav'yalov, B. I. .
IZVESTIYA MATHEMATICS, 2006, 70 (06) :1117-1164
[7]  
Gelfand IM., 1966, Integral Geometry and Representation Theory
[8]  
Helgason S., 1999, The Radon transform, V2nd, DOI DOI 10.1007/978-1-4757-1463-0
[9]   CONTINUITY OF THE RADON-TRANSFORM AND ITS INVERSE ON EUCLIDEAN-SPACE [J].
HERTLE, A .
MATHEMATISCHE ZEITSCHRIFT, 1983, 184 (02) :165-192
[10]   ON THE RANGE OF THE RADON-TRANSFORM AND ITS DUAL [J].
HERTLE, A .
MATHEMATISCHE ANNALEN, 1984, 267 (01) :91-99