Symplectic Partitioned Runge-Kutta And Symplectic Runge-Kutta Methods Generated By 2-Stage RadauIA Method

被引:0
作者
Tan, Jiabo [1 ]
机构
[1] Beijing Wuzi Univ, Sch Informat, Beijing 101149, Peoples R China
来源
ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, PTS 1 AND 2 | 2014年 / 444-445卷
关键词
Hamiltonian systems; symplecticity; RadauIA method; Runge-Kutta method; partitioned Runge-Kutta method;
D O I
10.4028/www.scientific.net/AMM.0.633
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
To preserve the symplecticity property, it is natural to require numerical integration of Hamiltonian systems to be symplectic. As a famous numerical integration, it is known that the 2-stage RadauIA method is not symplectic. With the help of symplectic conditions of Runge-Kutta method and partitioned Runge-Kutta method, a symplectic partitioned Runge-Kutta method and a symplectic Runge-Kuyta method are constructed on the basis of 2-stage RadauIA method in this paper.
引用
收藏
页码:633 / 636
页数:4
相关论文
共 9 条
[1]  
[Anonymous], CHISLENNOE RESHENIE
[2]  
Calkin MG, 1996, Lagrangian and Hamiltonian Mechanics
[3]  
Feng K., 1984, P 5 INT S DIFF GEOM
[4]  
Hairer E., 2006, GEOMETRIC NUMERICAL
[5]  
Lambert J. D., 1991, NUMERICAL METHODS OR
[6]   CANONICAL RUNGE-KUTTA METHODS [J].
LASAGNI, FM .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1988, 39 (06) :952-953
[7]   RUNGE-KUTTA SCHEMES FOR HAMILTONIAN-SYSTEMS [J].
SANZSERNA, JM .
BIT, 1988, 28 (04) :877-883
[8]  
Sun G, 2000, J COMPUT MATH, V18, P61
[9]  
SUN G, 1993, J COMPUT MATH, V11, P365