Using a machine learning approach to determine the space group of a structure from the atomic pair distribution function

被引:55
|
作者
Liu, Chia-Hao [1 ]
Tao, Yunzhe [1 ]
Hsu, Daniel [2 ]
Du, Qiang [1 ]
Billinge, Simon J. L. [1 ,3 ]
机构
[1] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[2] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
[3] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA
基金
美国国家科学基金会;
关键词
pair distribution function; space groups; convolutional neural network; machine learning; CRYSTAL-STRUCTURE; POWDER DIFFRACTION; NEURAL-NETWORKS; UNIT-CELL; CLASSIFICATION;
D O I
10.1107/S2053273319005606
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A method is presented for predicting the space group of a structure given a calculated or measured atomic pair distribution function (PDF) from that structure. The method utilizes machine learning models trained on more than 100 000 PDFs calculated from structures in the 45 most heavily represented space groups. In particular, a convolutional neural network (CNN) model is presented which yields a promising result in that it correctly identifies the space group among the top-6 estimates 91.9% of the time. The CNN model also successfully identifies space groups for 12 out of 15 experimental PDFs. Interesting aspects of the failed estimates are discussed, which indicate that the CNN is failing in similar ways as conventional indexing algorithms applied to conventional powder diffraction data. This preliminary success of the CNN model shows the possibility of model-independent assessment of PDF data on a wide class of materials.
引用
收藏
页码:633 / 643
页数:11
相关论文
共 50 条
  • [21] Structure of Nanocrystalline Ti3C2 MXene Using Atomic Pair Distribution Function
    Shi, Chenyang
    Beidaghi, Majid
    Naguib, Michael
    Mashtalir, Olha
    Gogotsi, Yury
    Billinge, Simon J. L.
    PHYSICAL REVIEW LETTERS, 2014, 112 (12)
  • [22] Reciprocal-space instrumental effects on the real-space neutron atomic pair distribution function
    Qiu, XY
    Bozin, ES
    Juhas, P
    Proffen, T
    Billinge, SJL
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2004, 37 : 110 - 116
  • [23] Structure of exfoliated titanate nanosheets determined by atomic pair distribution function analysis
    Gateshki, M
    Hwang, SJ
    Park, DH
    Ren, Y
    Petkov, V
    CHEMISTRY OF MATERIALS, 2004, 16 (24) : 5153 - 5157
  • [24] Crystal structure transformation in CeRuSn seen via the atomic pair distribution function
    Prokes, K.
    Kimber, S. A. J.
    Mydosh, J. A.
    Poettgen, R.
    PHYSICAL REVIEW B, 2014, 89 (06)
  • [25] Uncovering the intrinsic geometry from the atomic pair distribution function of nanomaterials
    Lei, Ming
    de Graff, Adam M. R.
    Thorpe, M. F.
    Wells, Stephen A.
    Sartbaeva, Asel
    PHYSICAL REVIEW B, 2009, 80 (02)
  • [26] Local atomic structure of semiconductor alloys using pair distribution functions
    Chung, JS
    Thorpe, MF
    PHYSICAL REVIEW B, 1997, 55 (03): : 1545 - 1553
  • [27] A Machine-Learning-Based Approach for Solving Atomic Structures of Nanomaterials Combining Pair Distribution Functions with Density Functional Theory
    Klove, Magnus
    Sommer, Sanna
    Iversen, Bo B.
    Hammer, Bjork
    Dononelli, Wilke
    ADVANCED MATERIALS, 2023, 35 (13)
  • [28] Improving the picture of atomic structure in nonoriented polymer domains using the pair distribution function: A study of polyamide 6
    Terban, Maxwell W.
    Puetz, Alexander M.
    Savasci, Goekcen
    Heinemeyer, Ute
    Hinrichsen, Bernd
    Desbois, Philippe
    Dinnebier, Robert E.
    JOURNAL OF POLYMER SCIENCE, 2020, 58 (13) : 1843 - 1866
  • [29] Using the pair angle distribution function for analysing protein structure
    Adams, P. L. R.
    Binns, J.
    Greaves, T. L.
    Martin, A. V.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2021, 77 : C574 - C574
  • [30] MLstructureMining: a machine learning tool for structure identification from X-ray pair distribution functions
    Kjaer, Emil T. S.
    Anker, Andy S.
    Kirsch, Andrea
    Lajer, Joakim
    Aalling-frederiksen, Olivia
    Billinge, Simon J. L.
    Jensen, Kirsten M. O.
    DIGITAL DISCOVERY, 2024, 3 (05): : 908 - 918