Using a machine learning approach to determine the space group of a structure from the atomic pair distribution function

被引:55
|
作者
Liu, Chia-Hao [1 ]
Tao, Yunzhe [1 ]
Hsu, Daniel [2 ]
Du, Qiang [1 ]
Billinge, Simon J. L. [1 ,3 ]
机构
[1] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[2] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
[3] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA
基金
美国国家科学基金会;
关键词
pair distribution function; space groups; convolutional neural network; machine learning; CRYSTAL-STRUCTURE; POWDER DIFFRACTION; NEURAL-NETWORKS; UNIT-CELL; CLASSIFICATION;
D O I
10.1107/S2053273319005606
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A method is presented for predicting the space group of a structure given a calculated or measured atomic pair distribution function (PDF) from that structure. The method utilizes machine learning models trained on more than 100 000 PDFs calculated from structures in the 45 most heavily represented space groups. In particular, a convolutional neural network (CNN) model is presented which yields a promising result in that it correctly identifies the space group among the top-6 estimates 91.9% of the time. The CNN model also successfully identifies space groups for 12 out of 15 experimental PDFs. Interesting aspects of the failed estimates are discussed, which indicate that the CNN is failing in similar ways as conventional indexing algorithms applied to conventional powder diffraction data. This preliminary success of the CNN model shows the possibility of model-independent assessment of PDF data on a wide class of materials.
引用
收藏
页码:633 / 643
页数:11
相关论文
共 50 条
  • [1] Probing the local structure of doped manganites using the atomic pair distribution function
    T. Proffen
    S.J.L. Billinge
    Applied Physics A, 2002, 74 : s1770 - s1772
  • [2] Probing the local structure of doped manganites using the atomic pair distribution function
    Proffen, T
    Billinge, SJL
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2002, 74 (Suppl 1): : S1770 - S1772
  • [3] Extracting structural motifs from pair distribution function data of nanostructures using explainable machine learning
    Anker, Andy S.
    Kjaer, Emil T. S.
    Juelsholt, Mikkel
    Christiansen, Troels Lindahl
    Skjaervo, Susanne Linn
    Jorgensen, Mads Ry Vogel
    Kantor, Innokenty
    Sorensen, Daniel Risskov
    Billinge, Simon J. L.
    Selvan, Raghavendra
    Jensen, Kirsten M. O.
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [4] Extracting structural motifs from pair distribution function data of nanostructures using explainable machine learning
    Andy S. Anker
    Emil T. S. Kjær
    Mikkel Juelsholt
    Troels Lindahl Christiansen
    Susanne Linn Skjærvø
    Mads Ry Vogel Jørgensen
    Innokenty Kantor
    Daniel Risskov Sørensen
    Simon J. L. Billinge
    Raghavendra Selvan
    Kirsten M. Ø. Jensen
    npj Computational Materials, 8
  • [5] Nanostructure studied using the atomic pair distribution function
    Billinge, S. J. L.
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2007, : 17 - 26
  • [7] Nanostructure investigations using atomic pair distribution function and other direct-space methods
    Juhas, Pavol
    Billinge, Simon J. L.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2008, 64 : C62 - C62
  • [8] Atomic-scale structure of nanocrystals by the atomic pair distribution function technique
    Petkov, V
    NSTI NANOTECH 2004, VOL 3, TECHNICAL PROCEEDINGS, 2004, : 410 - 413
  • [9] POMFinder: identifying polyoxometallate cluster structures from pair distribution function data using explainable machine learning
    Anker, Andy S.
    Kjaer, Emil T. S.
    Juelsholt, Mikkel
    Jensen, Kirsten M. O.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2024, 57 : 34 - 43
  • [10] Atomic structure of a cesium aluminosilicate geopolymer: A pair distribution function study
    Bell, Jonathan L.
    Sarin, Pankaj
    Provis, John L.
    Haggerty, Ryan P.
    Driemeyer, Patrick E.
    Chupas, Peter J.
    van Deventer, Jannie S. J.
    Kriven, Waltraud M.
    CHEMISTRY OF MATERIALS, 2008, 20 (14) : 4768 - 4776