Counting the orbits on finite simple groups under the action of the automorphism group - Suzuki groups vs. linear groups

被引:6
作者
Kohl, S [1 ]
机构
[1] Univ Stuttgart, Math Inst, D-70550 Stuttgart, Germany
关键词
D O I
10.1081/AGB-120004501
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the number omega(G) of orbits on the (finite) group G under the action of Aut(G) for G is an element of { PSL(2, q), SL(2, q), PSL(3,3),Sz(2(2m+1))}, covering all of the minimal simple groups as well as all of the simple Zassenhaus groups. This leads to recursive formulae on the one hand, and to the equation omega(Sz(q)) = omega(PSL(2, q)) + 2 on the other.
引用
收藏
页码:3515 / 3532
页数:18
相关论文
共 21 条
  • [1] [Anonymous], 1982, GRUNDLEHREN MATH WIS
  • [2] Carter R. W., 1993, FINITE GROUPS LIE TY
  • [3] CONJUGATE CLASSES OF CHEVALLEY GROUPS OF TYPE (G2)
    CHANG, B
    [J]. JOURNAL OF ALGEBRA, 1968, 9 (02) : 190 - &
  • [4] CHARACTER TABLE AND BLOCKS OF FINITE SIMPLE TRIALITY GROUPS 3D4(Q)
    DERIZIOTIS, DI
    MICHLER, GO
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 303 (01) : 39 - 70
  • [5] Dieudonne, 1951, MEM AM MATH SOC, V2
  • [6] DIEUDONNE J, 1963, ERGEBNISSE MATH IHRE, V5
  • [7] Fleischmann P, 1996, APPL ALGEBR ENG COMM, V7, P221
  • [8] *GAP GROUP, 2000, GAP GROUPS ALG PROGR
  • [9] Huppert B., 1967, ENDLICHE GRUPP ENGRU, V134
  • [10] JUNGNICKEL D, 1993, FINITE FIELDS