Convergence and superconvergence analysis of a new quadratic Hermite-type triangular element on anisotropic meshes

被引:8
作者
Shi, Dongyang [1 ]
Liang, Hui [2 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450052, Peoples R China
[2] Heilongjiang Univ, Dept Math, Harbin 150001, Peoples R China
关键词
Hermite-type; Triangular finite element; Anisotropic meshes; Convergence; Superconvergence; PATCH RECOVERY; INTERPOLATION;
D O I
10.1016/j.amc.2009.02.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new quadratic Hermite-type triangular finite element is conceived to solve a class of two-dimensional second-order elliptic boundary value problems. Its error estimates on anisotropic meshes are developed. Furthermore, we verify that some conditions set to the meshes contribute to the proof of its superconvergence properties, which can improve the approximation results. Numerical examples are given to confirm our theoretical analysis. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:257 / 269
页数:13
相关论文
共 19 条
[1]  
Apel T, 2001, NUMER MATH, V89, P193, DOI 10.1007/s002110000256
[2]   ANISOTROPIC INTERPOLATION WITH APPLICATIONS TO THE FINITE-ELEMENT METHOD [J].
APEL, T ;
DOBROWOLSKI, M .
COMPUTING, 1992, 47 (3-4) :277-293
[3]  
APEL T, 1999, ANISOTROPIC FINITE E
[4]   Superconvergence in the generalized finite element method [J].
Babuska, Ivo ;
Banerjee, Uday ;
Osborn, John E. .
NUMERISCHE MATHEMATIK, 2007, 107 (03) :353-395
[5]  
Brenner S. C., 2007, MATH THEORY FINITE E
[6]  
CHEN CM, 2002, STRUCTURE THEORY SUP
[7]   Anisotropic interpolations with application to nonconforming elements [J].
Chen, SC ;
Zhao, YC ;
Shi, DY .
APPLIED NUMERICAL MATHEMATICS, 2004, 49 (02) :135-152
[8]   Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes [J].
Chen, SC ;
Shi, DY ;
Zhao, YC .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2004, 24 (01) :77-95
[9]  
Ciarlet PG., 1978, FINITE ELEMENT ELLIP
[10]  
LI B, 1990, CHINESE J NUMER MATH, V12, P75