Nonstationary analogues of the Herglotz representation theorem for unbounded operators

被引:3
作者
Alpay, D [1 ]
Bolotnikov, V
Dijksma, A
Freydin, B
机构
[1] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
[2] Univ Groningen, Dept Math, NL-9700 AV Groningen, Netherlands
[3] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
关键词
D O I
10.1007/s00013-002-8273-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a Herglotz type representation theorem for (possibly unbounded) upper triangular operators with positive real part.
引用
收藏
页码:465 / 474
页数:10
相关论文
共 11 条
[1]   Nonstationary analogs of the Herglotz representation theorem: The discrete case [J].
Alpay, D ;
Dijksma, A ;
Peretz, Y .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 166 (01) :85-129
[2]  
ALPAY D, 1990, PROG SYST C, V5, P1
[3]   Brune sections in nonstationary system theory [J].
Alpay, D ;
Bolotnikov, V ;
Dewilde, P ;
Dijksma, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (03) :173-178
[4]  
Alpay D., 1990, EXTENSION INTERPOLAT, V47, P61
[5]  
ALPAY D, 1998, OPERATOR THEORY ADV, V106, P37
[6]  
Brodskii M.S, 1971, TRIANGULAR JORDAN RE, V32
[7]  
Deprettere E, 1988, OPERATOR THEORY ADV, V29, P97
[8]  
Dewilde P., 1998, TIME VARYING SYSTEMS
[9]  
DYM H, 1997, OPER THEOR, V95, P105
[10]   Discrete time-variant interpolation as classical interpolation with an operator argument [J].
Foias, C ;
Frazho, AE ;
Gohberg, I ;
Kaashoek, MA .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1996, 26 (04) :371-403