A fractional-order differential equation model of HIV infection of CD4+ T-cells

被引:220
作者
Ding, Yongsheng [1 ,2 ]
Ye, Haiping [1 ,3 ]
机构
[1] Donghua Univ, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China
[2] Donghua Univ, Minist Educ, Engn Res Ctr Digitized Text & Fash Technol, Shanghai 201620, Peoples R China
[3] Donghua Univ, Dept Appl Math, Shanghai 201620, Peoples R China
关键词
HIV infection; Fractional-order; Differential equation; Equilibrium; Stability; Numerical solution; Predictor-corrector method; STABILITY; DYNAMICS; SYSTEMS; CHAOS;
D O I
10.1016/j.mcm.2009.04.019
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we introduce fractional-order into a model of HIV infection of CD4(+) T-cells. We show that the model established in this paper possesses non-negative solutions, as desired in any population dynamics. We also carry out a detailed analysis on the stability of equilibrium. Numerical simulations are presented to illustrate the results. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:386 / 392
页数:7
相关论文
共 26 条
[1]   On fractional order differential equations model for nonlocal epidemics [J].
Ahmed, E. ;
Elgazzar, A. S. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (02) :607-614
[2]   Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models [J].
Ahmed, E. ;
El-Sayed, A. M. A. ;
El-Saka, H. A. A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) :542-553
[3]   THE FRACTIONAL-ORDER DYNAMICS OF BRAIN-STEM VESTIBULOOCULOMOTOR NEURONS [J].
ANASTASIO, TJ .
BIOLOGICAL CYBERNETICS, 1994, 72 (01) :69-79
[4]  
[Anonymous], 1996, Not AMS, DOI DOI 10.1006/TPBI.1998.1382
[5]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[6]  
Cole K.S., 1993, P COLD SPRING HARB S, P107
[7]   A delay-differential equation model of HIV infection of CD4+ T-cells [J].
Culshaw, RV ;
Ruan, SG .
MATHEMATICAL BIOSCIENCES, 2000, 165 (01) :27-39
[8]   Detailed error analysis for a fractional Adams method [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NUMERICAL ALGORITHMS, 2004, 36 (01) :31-52
[9]   A predictor-corrector approach for the numerical solution of fractional differential equations [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :3-22
[10]   Fractional derivatives embody essential features of cell rheological behavior [J].
Djordjevic, VD ;
Jaric, J ;
Fabry, B ;
Fredberg, JJ ;
Stamenovic, D .
ANNALS OF BIOMEDICAL ENGINEERING, 2003, 31 (06) :692-699