A-π-A structured non-fullerene acceptors for stable organic solar cells with efficiency over 17%

被引:78
|
作者
Liu, Wei [1 ]
Yuan, Jun [1 ]
Zhu, Can [2 ]
Wei, Qingya [1 ]
Liang, Songting [1 ]
Zhang, Huotian [3 ]
Zheng, Guanhaojie [4 ]
Hu, Yunbin [1 ]
Meng, Lei [2 ]
Gao, Feng [3 ]
Li, Yongfang [2 ]
Zou, Yingping [1 ]
机构
[1] Cent South Univ, State Key Lab Powder Met, Coll Chem & Chem Engn, Changsha 410083, Peoples R China
[2] Chinese Acad Sci, Beijing Natl Lab Mol Sci, CAS Key Lab Organ Solids, Inst Chem, Beijing 100190, Peoples R China
[3] Linkoping Univ, IFM, Biomol & Organ Elect, S-58183 Linkoping, Sweden
[4] Chinese Acad Sci, Shanghai Adv Res Inst, Zhangjiang Lab, Shanghai Synchrotron Radiat Facil SSRF, Shanghai 201204, Peoples R China
基金
中国国家自然科学基金;
关键词
A-pi-A type quasi-macromolecule; new molecular design strategy; high efficiency and long-term stability; organic solar cells; HIGH-PERFORMANCE; PHOTODEGRADATION; STABILITY; MECHANISM;
D O I
10.1007/s11426-022-1281-0
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the development of photovoltaic materials, especially the small molecule acceptors (SMAs), organic solar cells (OSCs) have made breakthroughs in power conversion efficiencies (PCEs). However, the stability of high-performance OSCs remains a critical challenge for future technological applications. To tackle the inherent instability of SMA materials under the ambient conditions, much effort has been made to improve OSCs stability, including device modification and new materials design. Here we proposed a new electron acceptor design strategy and developed a "quasi-macromolecule" (QM) with an A-pi-A structure, where the functionalized pi-bridge is used as a linker between two SMAs (A), to improve the long-term stability without deteriorating device efficiencies. Such type of QMs enables excellent synthetic flexibility to modulate their optical/electro-chemical properties, crystallization and aggregation behaviors by changing the A and pi units. Moreover, QMs possess a unique long conjugated backbone combining high molecular weight over 3.5 kDa with high purity. Compared with the corresponding SMA BTP-4F-OD (Y6-OD), the devices based on newly synthesized A-pi-A type acceptors QM1 and QM2 could exhibit better device stability and more promising PCEs of 17.05% and 16.36%, respectively. This kind of "molecular-framework" (A-pi-A) structure provides a new design strategy for developing high-efficiency and -stability photovoltaic materials.
引用
收藏
页码:1374 / 1382
页数:9
相关论文
共 50 条
  • [41] Preaggregation Matching of Donors and Acceptors in Solution Accounting for Thermally Stable Non-Fullerene Solar Cells
    Xiao, Xinyu
    Yi, Nan
    Yao, Ge
    Lu, Jianing
    Leng, Shifeng
    Liu, Feng
    Hu, Ming
    Yuan, Zhongyi
    Zhou, Weihua
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (52) : 58082 - 58093
  • [42] Electronic Configuration Tuning of Centrally Extended Non-Fullerene Acceptors Enabling Organic Solar Cells with Efficiency Approaching 19?%
    Duan, Tainan
    Feng, Wanying
    Li, Yulu
    Li, Zhixiang
    Zhang, Zhe
    Liang, Huazhe
    Chen, Hongbin
    Zhong, Cheng
    Jeong, Seonghun
    Yang, Changduk
    Chen, Shanshan
    Lu, Shirong
    Rakitin, Oleg A.
    Li, Chenxi
    Wan, Xiangjian
    Kan, Bin
    Chen, Yongsheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (42)
  • [43] Molecular Insights of Non-fused Ring Acceptors for High-Performance Non-fullerene Organic Solar Cells
    Li, Yibin
    Yu, Jiangsheng
    Zhou, Yinhua
    Li, Zhong'an
    CHEMISTRY-A EUROPEAN JOURNAL, 2022, 28 (57)
  • [44] Additive-Free Non-Fullerene Organic Solar Cells
    Zhang, Xianhe
    Tang, Yumin
    Yang, Kun
    Chen, Peng
    Gu, Xugang
    CHEMELECTROCHEM, 2019, 6 (22) : 5547 - 5562
  • [45] Non-fullerene small molecule electron acceptors for high-performance organic solar cells
    Hao Lin
    Qiang Wang
    Journal of Energy Chemistry , 2018, (04) : 990 - 1016
  • [46] Effect of Non-fullerene Acceptors' Side Chains on the Morphology and Photovoltaic Performance of Organic Solar Cells
    Zhang, Cai'e
    Feng, Shiyu
    Liu, Yahui
    Hou, Ran
    Zhang, Zhe
    Xu, Xinjun
    Wu, Youzhi
    Bo, Zhishan
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (39) : 33906 - 33912
  • [47] Non-fullerene small molecule electron acceptors for high-performance organic solar cells
    Lin, Hao
    Wang, Qiang
    JOURNAL OF ENERGY CHEMISTRY, 2018, 27 (04) : 990 - 1016
  • [48] Lithium Doping of ZnO for High Efficiency and Stability Fullerene and Non-fullerene Organic Solar Cells
    Soultati, Anastasia
    Fakharuddin, Azhar
    Polydorou, Ermioni
    Drivas, Charalampos
    Kaltzoglou, Andreas
    Haider, Muhammad Irfan
    Kournoutas, Fotis
    Fakis, Mihalis
    Palilis, Leonidas C.
    Kennou, Stella
    Davazoglou, Dimitris
    Falaras, Polycarpos
    Argitis, Panagiotis
    Gardelis, Spyros
    Kordatos, Apostolos
    Chroneos, Alexander
    Schmidt-Mende, Lukas
    Vasilopoulou, Maria
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (03) : 1663 - 1675
  • [49] Synergetic optimizing quinoxaline and selenophene substitution in non-fullerene acceptors for efficient organic solar cells
    Tao, Jing
    Yang, Kaiming
    Qiu, Dingding
    Wang, Caixuan
    Zhang, Hao
    Lv, Min
    Zhang, Jianqi
    Lu, Kun
    Wei, Zhixiang
    NANO ENERGY, 2024, 125
  • [50] High-Efficiency Semitransparent Organic Solar Cells with Non-Fullerene Acceptor for Window Application
    Upama, Mushfika Baishakhi
    Wright, Matthew
    Elumalai, Naveen Kumar
    Mahmud, Md Arafat
    Wang, Dian
    Xu, Cheng
    Uddin, Ashraf
    ACS PHOTONICS, 2017, 4 (09): : 2327 - 2334