Temperature and strain response of in-fiber air-cavity Fabry-Perot interferometer under extreme temperature condition

被引:9
作者
Tian, Qin [1 ]
Yang, Hangzhou [1 ,2 ]
Lim, Kok-Sing [2 ]
He, Yudong [1 ]
Ahmad, Harith [2 ]
Liu, Xiaochong [3 ]
机构
[1] Northwest Univ, Sch Phys, TaibaiBeilu 229, Xian 710069, Shaanxi, Peoples R China
[2] Univ Malaya, Photon Res Ctr, Kuala Lumpur 50603, Malaysia
[3] Northwestern Polytech Univ, Natl Key Lab Thermostruct Composite Mat, Xian 710072, Shaanxi, Peoples R China
来源
OPTIK | 2020年 / 220卷
关键词
Optical fiber sensor; Fabry-Perot cavity interferometer; High temperature measurement; Strain measurement; GRATINGS; SENSOR; LASER;
D O I
10.1016/j.ijleo.2020.165034
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this work, a simple fiber Fabry-Perot air-cavity interferometer (FPI) is formed by splicing a 246 mu m long hollow core silica tube (HCST) between two single mode fibers (SMFs). In the thermal characterization test, the FPI exhibits limited linear range up to 700 degrees C in the first cycle of isochronal annealing treatment from room temperature up to 1000 degrees C. However, after a series of repeated isochronal thermal annealing, the temperature response of the proposed FPI is extended further to 1000 degrees C with a good thermal repeatability. Meanwhile, the annealed FPI has linear axial strain sensitivities up to 1000 mu epsilon from room temperature up to 800 degrees C. The proposed fiber structure is a potential sensor for high-temperature or stress measurement in aeronautical or metallurgical fields.
引用
收藏
页数:6
相关论文
共 25 条
  • [1] [Anonymous], 2019, IEEE SENS J, DOI DOI 10.1007/S42452-019-0736-5
  • [2] Chen X., 2011, SCI TECHNOL ENG, V45, P7760
  • [3] In-fiber Fabry-Perot interferometer for strain and magnetic field sensing
    Costa, Greice K. B.
    Gouvea, Paula M. P.
    Soares, Larissa M. B.
    Pereira, Joao M. B.
    Favero, Fernando
    Braga, Arthur M. B.
    Palffy-Muhoray, Peter
    Bruno, Antonio C.
    Carvalho, Isabel C. S.
    [J]. OPTICS EXPRESS, 2016, 24 (13): : 14690 - 14696
  • [4] High-Speed and High-Resolution Interrogation of a Strain and Temperature Random Grating Sensor
    Deng, Hong
    Lu, Ping
    Mihailov, Stephen J.
    Yao, Jianping
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (23) : 5587 - 5592
  • [5] PCF-Based Fabry-Perot Interferometric Sensor for Strain Measurement at High Temperatures
    Deng, Ming
    Tang, Chang-Ping
    Zhu, Tao
    Rao, Yun-Jiang
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2011, 23 (11) : 700 - 702
  • [6] Fabry-Perot cavity based on silica tube for strain sensing at high temperatures
    Ferreira, Marta S.
    Roriz, Paulo
    Bierlich, Joerg
    Kobelke, Jens
    Wondraczek, Katrin
    Aichele, Claudia
    Schuster, Kay
    Santos, Jose L.
    Frazao, Orlando
    [J]. OPTICS EXPRESS, 2015, 23 (12): : 16063 - 16070
  • [7] Fiber Optic Sensors for Structural Health Monitoring of Air Platforms
    Guo, Honglei
    Xiao, Gaozhi
    Mrad, Nezih
    Yao, Jianping
    [J]. SENSORS, 2011, 11 (04): : 3687 - 3705
  • [8] A Temperature Self-Compensated LPFG Sensor for Large Strain Measurements at High Temperature
    Huang, Ying
    Zhou, Zhi
    Zhang, Yinan
    Chen, Genda
    Xiao, Hai
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2010, 59 (11) : 2997 - 3004
  • [9] Strain and high-temperature discrimination using a Type II fiber Bragg grating and a miniature fiber Fabry-Perot interferometer
    Jiang, Yajun
    Yang, Dexing
    Yuan, Yuan
    Xu, Jian
    Li, Dong
    Zhao, Jianlin
    [J]. APPLIED OPTICS, 2016, 55 (23) : 6341 - 6345
  • [10] The strain response of chemical composition gratings at high temperatures
    Li, Guo-Yu
    Guan, Bai-Ou
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2009, 20 (02)